Advertisement

International Journal of Thermophysics

, Volume 19, Issue 4, pp 1165–1174 | Cite as

Structural Studies of DNA–Cationic Lipid Complexes Confined in Lithographically Patterned Microchannel Arrays

  • Y. Li
  • G. C. L. Wong
  • E. Caine
  • E. L. Hu
  • C. R. Safinya
Article

Abstract

We have used lithographically patterned microchannel arrays with channel widths ranging from 1 to 20 μm, fabricated using electron beam lithography and reactive ion etching, in structural studies of DNA–cationic lipid complexes in confinement. Various techniques have been developed for loading these DNA–membrane complexes into the microchannels or to form the complexes in situ by sequentially depositing DNA and lipid solutions into the microchannels. Optical microscopy studies indicate that such complex formation is strongly influenced by the periodic channel structure even at channel widths much larger than the persistent length of the DNA molecules. Preliminary x-ray diffraction experiments conducted at Stanford Synchrotron Radiation Laboratory (SSRL) yielded only a weak signal from the lipid bilayers in the complexes. The use of a microfocused x-ray beam produced by the newly developed Bragg–Fresnel optics at a third-generation synchrotron facility may dramatically increase the signal-to-noise ratio and allow observation of orientational as well as positional ordering of DNA molecules induced by the microchannels. Structural control of the DNA–membrane complexes has a broad range of potential applications in gene probe technology and as mesoscopic biomolecular composites.

Bragg–Fresnel optics confinement DNA complexes micro-channel arrays x-ray diffraction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    J. T. Groves, N. Ulman, and S. G. Boxer, Science 275:651 (1997).Google Scholar
  2. 2.
    W. D. Volkmuth, T. Duke, M. C. Wu, and R. H. Austin, Phys. Rev. Lett. 72(13):2117 (1994).Google Scholar
  3. 3.
    S. P. A. Fodor, R. P. Rava, X. C. Huang, A. C. Pease, C. P. Holmes, and C. L. Adams, Nature 364:555 (1993).Google Scholar
  4. 4.
    J. O. Radler, I. Koltover, T. Salditt, and C. R. Safinya, Science 275:801 (1997).Google Scholar
  5. 5.
    M. J. Rooks, G. C. Eugster, J. A. Del Alamo, G. L. Snider, and E. L. Hu, J. Vac. Sci. Tech. B-Microelect. Proc. Phenomena 9:2856 (1991).Google Scholar
  6. 6.
    E. J. Caine, S. Shi, E. L. Hu, Y. Li, S. H. J. Idziak, G. Subramanian, and C. R. Safinya, in Micro-and Nano-Engineering 96, S. P. Beaumont and C. D. W. Wilkinson, eds. (Elsevier, Amsterdam, 1997), pp. 289–292.Google Scholar
  7. 7.
    Y. Li, S. H. J. Idziak, E. Caine, G. Subramanian, E. Hu, and C. R. Safinya, in Dynamics in Small Confining Systems III, J. M. Drake, J. Klafter, and R. Kopelman, eds. (Materials Research Society, Pittsburgh, 1997), pp. 301–306.Google Scholar

Copyright information

© Plenum Publishing Corporation 1998

Authors and Affiliations

  • Y. Li
    • 1
  • G. C. L. Wong
    • 1
  • E. Caine
    • 2
  • E. L. Hu
    • 2
  • C. R. Safinya
    • 1
  1. 1.Materials Research Laboratory, Materials Department, Physics Department and Biochemistry and Molecular Biology ProgramUniversity of CaliforniaSanta BarbaraU.S.A
  2. 2.Electrical and Computer Engineering Department and Nanotech, UCSB Branch of the National Nanofabrication Users Network (NNUN)University of CaliforniaSanta BarbaraU.S.A

Personalised recommendations