Machine Learning

, Volume 3, Issue 4, pp 343–372 | Cite as

Conceptual Clustering, Categorization, and Polymorphy

  • Stephen José Hanson
  • Malcolm Bauer

Abstract

In this paper we describe WITT, a computational model of categorization and conceptual clustering that has been motivated and guided by research on human categorization. Properties of categories to which humans are sensitive include best or prototypical members, relative contrasts between categories, and polymorphy (neither necessary nor sufficient feature rules). The system uses pairwise feature correlations to determine the “similarity” between objects and clusters of objects, allowing the system a flexible representation scheme that can model common-feature categories and polymorphous categories. This intercorrelation measure is cast in terms of an information-theoretic evaluation function that directs WITT'S search through the space of clusterings. This information-theoretic similarity metric also can be used to explain basic-level and typicality effects that occur in humans. WITT has been tested on both artificial domains and on data from the 1985 World Almanac, and we have examined the effect of various system parameters on the quality of the model's behavior.

Conceptual clustering categorization correlation polymorphy knowledge structures coherence 

References

  1. Cheeseman, P., Kelly, J., Self, M., Stutz, J., Taylor, W., & Freeman, D. (1988). Proceedings of the Fifth International Conference on Machine Learning(pp. 54–64). Ann Arbor, MI: Morgan Kaufmann.Google Scholar
  2. DeJong, G., & Mooney, R. (1986). Explanation-based learning:An alternative view. Machine Learning, 1145–176.Google Scholar
  3. Dennis, I., Hampton, J. A., & Lea, S. E. G. (1973). New problem in concept formation. Nature, 243101–102.Google Scholar
  4. Estes, W. K. (1986). Memory storage and retrieval processes in category learning. Journal of Experimental Psychology:General, 115155–174.Google Scholar
  5. Everitt, B. (1974). Cluster analysis. London: Heinemann Educational Books.Google Scholar
  6. Gluck, M. A., & Corter, J. E. (1985). Information, uncertainty, and the utility of categories. Proceedings of the Seventh Annual Conference of the Cognitive Science Society(pp. 283–287). Irvine, CA: Lawrence Erlbaum.Google Scholar
  7. Fisher, D. H. (1987). Knowledge acquisition via incremental conceptual clustering. Machine Learning, 2139–172.Google Scholar
  8. Grossberg, S. (1976). Adaptive pattern classification and universal recoding. Part I:Parallel development and coding of neural feature detectors. Bio-logical Cybernetics, 23121–134.Google Scholar
  9. Homa, D. (1978). Abstraction of ill-defined form. Journal of Experimental Psychology:Human Learning and Memory, 4407–416.Google Scholar
  10. Lance, G. N., & Williams, W. T. (1967). Note on a new information-statistic classificatory program. Computer Journal, 9373–380.Google Scholar
  11. Lebowitz, M. (1987). Experiments with incremental concept formation:UNI-MEM. Machine Learning, 2103–138.Google Scholar
  12. Medin, D. L., Wattenmaker, W. D., & Hampson, S. E. (1987). Family re-semblance, conceptual cohesiveness and category construction. Cognitive Psychology, 19242–279.Google Scholar
  13. Michalski, R. S. (1980). Knowledge acquisition through conceptual cluster-ing:A theoretical framework and an algorithm for partitioning data into conjunctive concepts. International Journal of Policy Analysis and Infor-mation Systems, 4, 219–244.Google Scholar
  14. Michalski, R. S., & Stepp, R. E. (1983a). Learning from observation:Con-ceptual clustering. In R. S. Michalski, J. G. Carbonell, & T. M. Mitchell (Eds.), Machine learning:An artificial intelligence approach. Los Altos, CA: Morgan Kaufmann.Google Scholar
  15. Michalski, R. S., & Stepp, R. E. (1983b). Automated construction of classifi-cations:Conceptual clustering verses numerical taxonomy. IEEE Trans-actions on Pattern Analysis and Machine Intelligence, 5396–410.Google Scholar
  16. Miller, G. A. (1971). Empirical methods in the study of semantics. In D. D. Steinberg & L. A. Jakobovits (Eds.), Semantics. Cambridge: Cambridge University Press.Google Scholar
  17. Mitchell, T. M. (1978). Version spaces:An approach to concept learning. Doctoral dissertation, Department of Electrical Engineering, Stanford University, Palo Alto, CA.Google Scholar
  18. Mitchell, T. M., Keller, R. M., & Kedar-Cabelli, S. T. (1986). Explanation-based generalization:A unifying view. Machine Learning, 1, 47–80.Google Scholar
  19. Murphy, G. L. (1982). Cue validity and levels of categorization. Psychological Bulletin, 91174–177.Google Scholar
  20. Murphy, G. L., & Medin, D. L. (1985). The role of theories in conceptual coherence. Psychological Review, 92289–316.Google Scholar
  21. Orloci, L. (1969). Information analysis of structure in biological collections. Nature, 223483–484.Google Scholar
  22. Posner, M. I., & Keele, S. W. (1968). On the genesis of abstract ideas. Journal of Experimental Psychology, 77353–363.Google Scholar
  23. Quinlan, J. R. (1986). Induction of decision trees, Machine Learning, 181–106.Google Scholar
  24. Rosch, E., Mervis, C., Gray, W., Johnson, D., & Boyes-Braem, P. (1976). Basic objects in natural categories. Cognitive Psychology, 7382–439.Google Scholar
  25. Rosch, E., & Lloyd, B. B. (Eds. ). (1978). Cognition and categorization. Hillsdale, NJ: Lawrence Erlbaum.Google Scholar
  26. Rumelhart, D. E., & McClelland, J. L. (1986). Parallel distributed processing: Explorations in the micro-structure of cognition. Cambridge, MA: MIT Press.Google Scholar
  27. Schank, R. C., Collins, G. C., & Hunter, L. E. (1986). Transcending inductive category formation in learning. Behavioral and Brain Sciences, 9639–686.Google Scholar
  28. Smith, E. E., & Medin, D. L. (1981). Categories and concepts. Cambridge, MA: Harvard University Press.Google Scholar
  29. Sneath, P. H., & Sokal, R. R. (1973). Numerical taxonomy:The principles and practice of numerical classification. San Francisco, CA: Freeman.Google Scholar
  30. Wallace, C. S., & Boulton D. M. (1968). An information measure for classification. Computer Journal, 11185–194.Google Scholar
  31. Winston, P. H. (1975). Learning structural descriptions from examples. In P. H. Winston (Ed.), The psychology of computer vision. New York: McGraw-Hill.Google Scholar
  32. Wittgenstein, L. (1953). Philosophical investigations. Oxford: Basil Blackwell.Google Scholar
  33. Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8338–353.Google Scholar

Copyright information

© Kluwer Academic Publishers 1989

Authors and Affiliations

  • Stephen José Hanson
  • Malcolm Bauer

There are no affiliations available

Personalised recommendations