Theoretical and Mathematical Physics

, Volume 134, Issue 3, pp 339–350 | Cite as

Weak Convergence of Solutions of the Liouville Equation for Nonlinear Hamiltonian Systems

  • V. V. Kozlov
  • D. V. Treshchev
Article

Abstract

We suggest sufficient conditions for the existence of weak limits of solutions of the Liouville equation as time increases indefinitely. The presence of the weak limit of the probability distribution density leads to a new interpretation of the second law of thermodynamics for entropy increase.

Hamiltonian system Liouville equation weak convergence entropy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    J. W. Gibbs, “Elementary principles in statistical mechanics,” in: The CollectedWorks of J. W. Gibbs, Vol. II, Part 1, Yale Univ. Press, New Haven, Conn. (1931).Google Scholar
  2. 2.
    N. N. Bogoliubov, Problems of a Dynamical Theory in Statistical Physics [in Russian], Gostekhizdat, Moscow (1946); English transl., North-Holland, Amsterdam (1962).Google Scholar
  3. 3.
    G. E. Uhlenbeck and G. W. Ford, Lectures in Statistical Mechanics (Lectures in Applied Mathematics. Proceedings of the Summer Seminar, Boulder, Colorado, 1960, Vol. 1), Amer. Math. Soc., Providence, R. I. (1963).Google Scholar
  4. 4.
    H. Poincaré, J. Phys. Th´eor. Appl., 4 S´erie, 5, 369–403 (1906).Google Scholar
  5. 5.
    P. R. Halmos, Lectures on Ergodic Theory, The Mathematical Society of Japan, Tokyo (1956); A. Lasota and M. C. Mackey, Probabilistic Properties of Deterministic Systems, Cambridge Univ. Press, Cambridge (1985).Google Scholar
  6. 6.
    V. V. Kozlov, Dokl. Rossiiskoi Akad. Nauk, 382, 593 (2002).Google Scholar
  7. 7.
    V. V. Nemytskii and V. V. Stepanov, Qualitative Theory of Differential Equations [in Russian], Gostekhizdat, Moscow (1949); English transl. (Princeton Math. Series), Princeton Univ. Press, Princeton, N. J. (1960).Google Scholar
  8. 8.
    G. H. Hardy, Divergent Series, Clarendon, Oxford (1949).Google Scholar
  9. 9.
    F. Riesz and B. Sz.-Nagy, Leçons d'analyse fonctionnelle (6th Ed.), Akadémiai Kiadó, Budapest (1972); B. Sz.-Nagy, “Unitary dilations of Hilbert space operators and related topic,” in: Expository Lectures from the CBMS Regional Conference Held at the University of New Hampshire, June 7–11, 1971, Amer. Math. Soc., Providence, R. I. (1974).Google Scholar
  10. 10.
    G. H. Hardy, J. E. Littlewood, and G. Polya, Inequalities, Cambridge Univ. Press, Cambridge (1934).Google Scholar
  11. 11.
    V. V. Kozlov, Reg. Chaotic Dyn., 6, 235 (2001).Google Scholar
  12. 12.
    M. Kac, Probability and Related Questions in Physics [in Russian], Mir, Moscow (1951); I. Prigogine and I. Stengers, Order out of Chaos, Hienemann, London (1984).Google Scholar
  13. 13.
    N. S. Krylov, Works on the Foundations of Statistical Physics [in Russian], USSR Acad. Sci. Press, Moscow (1950); English transl. (Princeton Series in Physics), Princeton Univ. Press, Princeton, N. J. (1979).Google Scholar

Copyright information

© Plenum Publishing Corporation 2003

Authors and Affiliations

  • V. V. Kozlov
    • 1
  • D. V. Treshchev
    • 1
  1. 1.Moscow State UniversityMoscowRussia

Personalised recommendations