Journal of Bioenergetics and Biomembranes

, Volume 29, Issue 2, pp 185–193 | Cite as

Mitochondrial Implication in Accidental and Programmed Cell Death: Apoptosis and Necrosis

  • Naoufal Zamzami
  • Tamara Hirsch
  • Bruno Dallaporta
  • Patrice X. Petit
  • Guido Kroemer


Both physiological cell death (apoptosis) and at least some cases of accidental cell death (necrosis) involve a two-step-process. At a first level, numerous physiological or pathological stimuli can trigger mitochondrial permeability transition which constitutes a rate-limiting event and initiates the common phase of the death process. Mitochondrial permeability transition (FT) involves the formation of proteaceous, regulated pores, probably by apposition of inner and outer mitochondrial membrane proteins which cooperate to form the mitochondrial PT pore complex. Inhibition of PT by pharmacological intervention on mitochondrial structures or mitochondrial expression of the apoptosis-inhibitory oncoprotein Bcl-2 thus can prevent cell death. At a second level, the consequences of mitochondrial dysfunction (collapse of the mitochondrial transmembrane potential, uncoupling of the respiratory chain, hyperproduction of superoxide anions, disruption of mitochondrial biogenesis, outflow of matrix calcium and glutathione, and release of soluble intermembrane proteins) can entail a bioenergetic catastrophe culminating in the disruption of plasma membrane integrity (necrosis) and/or the activation and action of apoptogenic proteases with secondary endonuclease activation and consequent oligonucleosomal DNA fragmentation (apoptosis). The acquisition of the biochemical and ultrastructural features of apoptosis critically relies on the liberation of apoptogenic proteases or protease activators from the mitochondrial intermembrane space. This scenario applies to very different models of cell death. The notion that mitochondrial events control cell death has major implications for the development of death-inhibitory drugs.

Mitochondrial transmembrane potential permeability transition programmed cell death proteases 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ankarcrona, M., Dypbukt, J. M., Bonfoco, E., Zhivotovsky, B., Orrenius, S., Lipton, S. A., and Nicotera, P. (1995). Neuron 15, 961–973.Google Scholar
  2. Baffy, G., Miyashati, T., Williamson, J. R., and Reed, J. C. (1993). J. Biol. Chem. 268, 6511–6519.Google Scholar
  3. Barr, P. J., and Tomei, L. D. (1994). Biotechnology 12, 487–493.Google Scholar
  4. Bernardi, P., and Petronilli, V. (1996). J. Bioenerg. Biomembr. 28, 129–136.Google Scholar
  5. Beutner, G., Rück, A., Riede, B., Welte, W., and Brdiczka, D. (1996). FEBS Lett. 396, 189–195.Google Scholar
  6. Botla, R., Spivey, J. R., Aguilar, H., Bronk, S. G., and Gores, G. J. (1995). J. Pharmacol. Exp. Ther. 272, 930–938.Google Scholar
  7. Brustovetsky, N., and Klingenberg, M. (1996). Biochemistry 35, 8483–8488.Google Scholar
  8. Carayon, P., Portier, M., Dussossoy, D., Bord, A., Petitpretre, G., Canat, X., Le Fur, G., and Casellas, P. (1996). Blood 87, 3170–3178.Google Scholar
  9. Castedo, M., Hirsch, T., Susin, S. A., Zamzami, N., Marchetti, P., Macho, A., and Kroemer, G. (1996). J. Immunol. 157, 512–521.Google Scholar
  10. Cory, S. (1995). Annu. Rev. Immunol. 13, 513–543.Google Scholar
  11. Costantini, P., Petronilli, V., Colonna, R., and Bernardi, P. (1995). Toxicology 99, 77–88.Google Scholar
  12. Decaudin, D., Geley, S., Hirsdch, T., Castedo, M., Marchetti, P., Macho, A., Kofler, R., and Kroemer, G. (1997). Cancer Res., in press.Google Scholar
  13. Fliss, H. and Gattinger, D. (1996). Circ. Res. 79, 949–956.Google Scholar
  14. Greenhalf, W., Stephan, C., and Chaudhuri, B. (1996). FEBS Lett. 380, 169–175.Google Scholar
  15. Griffiths, E. J., and Halestrup, A. P. (1993). J. Mol. Cell. Cardiol. 25, 1461–1469.Google Scholar
  16. Hockenbery, D. M., Oltvai, Z. N., Yin, X.-M., Milliman, C. L. and Korsmeyer, S. J. (1993). Cell 75, 241–251.Google Scholar
  17. Imberti, R., Nieminen, A. L., Herman, B., and Lemasters, J. J. (1993). J. Pharmacol. Exp. Ther. 265, 392–400.Google Scholar
  18. Itoh, G., Tamura, J., Suzuki, M., Suzuki, Y., Ikeda, H., Koike, M., Nomura, M., Jie, T., and Ito, K. (1995). Am. J. Pathol. 146, 1325–1331.Google Scholar
  19. Kane, D. J., Sarafian, T. A., Anton, R., Hahn, H., Gralla, E. B., Valentine, J. S., Örd, T., and Bredesen, D. E. (1993). Science 262, 1274–1277.Google Scholar
  20. Kass, G. E. N., Juedes, M. J., and Orrenius, S. (1992). Biochem. Pharmacol. 44, 1995–2003.Google Scholar
  21. Krajewski, S., Tanaka, S., Takayama, S., Schibler, M. J., Fenton, W., and Reed, J. C. (1993). Cancer Res. 53, 4701–4714.Google Scholar
  22. Kroemer, G. (1995). Adv. Immunol. 58, 211–296.Google Scholar
  23. Kroemer, G. (1997). Cell Death Differ., in press.Google Scholar
  24. Kroemer, G., Petit, P. X., Zamzami, N., Vayssière, J.-L., and Mignotte, B. (1995). FASEB J. 9, 1277–1287.Google Scholar
  25. Kroemer, G., Zamzami, N., and Susin, S. A. (1997). Immunol. Today, in press.Google Scholar
  26. Lazebnik, Y. A., Takahashi, A., Poirier, G. G., Kaufman, S. H., and Earnshaw, W. C. (1995). J. Cell Sci. S19, 41–49.Google Scholar
  27. Leyssens, A., Crompton, M., and Duchen, M. R. (1996). J. Physiol.-London 494P, P109–P110.Google Scholar
  28. Liu, X., Kim, C. N., Yang, J., Jemmerson, R., and Wang, X. (1996). Cell 86, 147–157.Google Scholar
  29. Macho, A., Decaudin, D., Castedo, M., Hirsch, T., Susin, S. A. S., Zamzami, N., and Kroemer, G. (1996). Cytometry, in press.Google Scholar
  30. Marchetti, P., Castedo, M., Susin, S. A., Zamzami, N., Hirsch, T., Haeffner, A., Hirsch, F., Geuskens, M., and Kroemer, G. (1996a). J. Exp. Med. 184, 1155–1160.Google Scholar
  31. Marchetti, P., Decaudin, D., Macho, A., Zamzami, N., Hirsch, T., Susin, S. A., and Kroemer, G. (1996b). Eur. J. Immunol., in press.Google Scholar
  32. Marchetti, P., Hirsch, T., Zamzami, N., Castedo, M., Decaudin, D., Susin, S. A., Masse, B., and Kroemer, G. (1996c). J. Immunol. 157, 4830–4836.Google Scholar
  33. Marchetti, P., Susin, S. A., Decaudin, D., Gamen, S., Castedo, M., Hirsch, T., Zamzami, N., Naval, J., Senik, A., and Kroemer, G. (1996d). Cancer Res. 56, 2033–2038.Google Scholar
  34. Martin, S. J., Newmeyer, D. D., Mathisa, S., Farschon, D. M., Wang, H. G., Reed, J. C., Kolesnick, R. N., and Green, D. R. (1995). EMBO J. 14, 5191–5200.Google Scholar
  35. Martinou, J. C., Dubois-Dauphin-M., Staple, J. K., Rodriguez, I., Frankowski, H., Missotten, M., Albertini, P., Talabot, D., Catsikas, S., Pietra, C., and Huarte, J. (1994). Neuron 13, 1017–1030.Google Scholar
  36. McEnery, M. W., Snowman, A. M., Trifiletti, R. R., and Snyder, S. H. (1992). Proc. Natl. Acad. Sci. USA 89, 3170–3174.Google Scholar
  37. Muchmore, S. W., Sattler, M., Liang, H., Meadows, R. P., Harlan, J. E., Yoon, H. S., Nettesheim, D., Chang, B. S., Thompson, C. B., Wong, S.-L., Ng, S.-H., and Fesik, S. W. (1996). Nature 381, 335–341.Google Scholar
  38. Murphy, A. N., Bredesen, D. E., Cortopassi, G., Wang, E., and Fiskum, G. (1996). Proc. Natl. Acad. Sci. USA 93, 9893–9898.Google Scholar
  39. Nazareth, W., Yaferi, N., and Crompton, M. (1991). J. Mol. Cell. Cardiol. 23, 1351–1358.Google Scholar
  40. Newmeyer, D. D., Farschon, D. M., and Reed, J. C. (1994). Cell 79, 353–364.Google Scholar
  41. Nguyen, M., Branton, P. E., Walton, P. A., Oltvai, Z. N., Korsmeyer, S. J., and Shore, G. C. (1994). J. Biol. Chem. 269, 16521–16524.Google Scholar
  42. Nieminen, A. L., Saylor, A. K., Tesfai, S. A., Herman, B., and Lemasters, J. J. (1995). Biochem. J. 307, 99–106.Google Scholar
  43. Osborne, B. A., Smith, S. W., Liu, Z.-G., McLaughlin, K. A., Grimm, L., and Schwartz, L. M. (1994). Immunol. Rev. 142, 301–320.Google Scholar
  44. Packer, M. A., Miesel, R., and Murphy, M. P. (1996). Biochem. Pharmacol. 51, 267–273.Google Scholar
  45. Pastorino, J. G., Snyder, J. W., Serroni, A., Hoek, J. B., and Farber, J. L. (1993). J. Biol. Chem. 268, 13791–13798.Google Scholar
  46. Pastorino, J. G., Simbula, G., Gilfor, E., Hoek, J. B., and Farber, J. L. (1994). J. Biol. Chem. 269, 31041–31046.Google Scholar
  47. Pastorino, J. G., Snyder, J. W., Hoek, J. B., and Farber, J. L. (1995). Am. J. Physiol. 268, C676–685.Google Scholar
  48. Pastorino, J. G., Simbula, G., Yamamoto, K., Glascott, P. A. J., Rothman, R. J., and Farber, J. L. (1996). J. Biol. Chem. 271, 29792–29799.Google Scholar
  49. Petit, P. X., LeCoeur, H., Zorn, E., Dauguet, C., Mignotte, B., and Gougeon, M. L. (1995). J. Cell. Biol., 130, 157–167.Google Scholar
  50. Reed, J. C. (1995). J. Cell Biol. 124, 1–6.Google Scholar
  51. Saxena, K., Henry, T. R., Solem, L. E., and Wallace, K. B. (1995). Arch. Biochem. Biophys. 317, 79–84.Google Scholar
  52. Schinder, A. F., Olson, E. C., Spitzer, N. C., and Montal, M. (1996). J. Neurosci. 16, 6125–6133.Google Scholar
  53. Shiga, Y., ONodera, H., Matsuo, Y., and Kogure, K. (1992). Brain Res. 595, 145–148.Google Scholar
  54. Shimizu, S., Eguchi, Y., Kosaka, H., Kamlike, W., Matsuda, H., and Tsujimoto, Y. (1995). Nature 374, 811–813.Google Scholar
  55. Shimizu, S., Eguchi, Y., Kamiike, W., Waguri, S., Uchiyama, Y., Matsuda, H., and Tsujimoto, Y. (1996). Oncogene 13, 21–29.Google Scholar
  56. Simonian, N. A., Getz, R. L., Leveque, J. C., Konradi, C., and Coyle, J. T. (1996). Neuroscience 74, 675–683.Google Scholar
  57. Snyder, J. W., Pastorino, J. G., Attie, A. M., and Farber, J. L. (1992). Biochem. Pharmacol. 44, 833–835.Google Scholar
  58. Susin, S. A., Zamzami, N., Castedo, M., Hirsch, T., Marchetti, P., Macho, A., Daugas, E., Geuskens, M., and Kroemer, G. (1996). J. Exp. Med. 184, 1331–1342.Google Scholar
  59. Susin, S. A., Zamzami, N., and Kroemer, G. (1997). Apoptosis, in press.Google Scholar
  60. Thompson, C. B. (1995). Science 267, 1456–1462.Google Scholar
  61. Uchino, H., Elmer, E., Uchino, K., Lindvall, O., and Siesjo, B. K. (1995). Ada Physiol. Scand. 155, 469–474.Google Scholar
  62. van de Water, B., Zoeteweij, J. P., de Bont, H. J., Mulder, G. J., and Nagelkerke, J. F. (1994). J. Biol. Chem. 269, 14546–14552.Google Scholar
  63. Vayssière, J.-L., Petit, P. X., Risler, Y., and Mignotte, B. (1994). Proc. Natl. Acad. Sci. USA 91, 11752–11756.Google Scholar
  64. Wang, H.-G., Rapp, U. R., and Reed, J. C. (1996). Cell 87, 629–638.Google Scholar
  65. Waring, P., and Beaver, J. (1996). Exp. Cell Res. 227, 264–276.Google Scholar
  66. Wertz, I. E., and Hanley, M. R. (1996). Trends Biochem. Sci. 21, 359–364.Google Scholar
  67. White, R. J., and Reynolds, I. J. (1996). J. Neurosci. 16, 5688–5697.Google Scholar
  68. Xiang, J., Chao, D. T., and Korsmeyer, S. J. (1996). Proc. Natl. Acad. Sci. USA 93, 14559–14563.Google Scholar
  69. Yang, E., and Korsmeyer, S. J. (1996). Blood 88, 386–401.Google Scholar
  70. Zamzami, N., Marchetti, P., Castedo, M., Decaudin, D., Macho, A., Hirsch, T., Susin, S. A., Petit, P. X., Mignotte, B., and Kroemer, G. (1995a). J. Exp. Med. 182, 367–377.Google Scholar
  71. Zamzami, N., Marchetti, P., Castedo, M., Zanin, C., Vayssière, J.-L., Petit, P. X., and Kroemer, G. (1995b). J. Exp. Med. 181, 1661–1672.Google Scholar
  72. Zamzami, N., Susin, S. A., Marchetti, P., Hirsch, T., Gómez-Monterrey, I., Castedo, M., and Kroemer, G. (1996). J. Exp. Med. 183, 1533–1544.Google Scholar
  73. Zha, H., Fisk, H. A., Yaffe, M. P., Mahajan, N., Herman, B., and Reed, J. C. (1996). Mol. Cell. Biol. 16, 6494–6508.Google Scholar
  74. Zhu, W., Cowie, A., Wasfy, G. W., Penn, L. Z., Leber, B., and Andrews, D. W. (1996). EMBO J. 15, 4130–4141.Google Scholar
  75. Zoratti, M., and Szabò, I. (1995). Biochem. Biophys. Acta—Rev. Biomembr. 1241, 139–176.Google Scholar

Copyright information

© Plenum Publishing Corporation 1997

Authors and Affiliations

  • Naoufal Zamzami
    • 1
  • Tamara Hirsch
    • 1
  • Bruno Dallaporta
    • 1
  • Patrice X. Petit
    • 1
  • Guido Kroemer
    • 1
  1. 1.Centre National de la Recherche Scientifique-UPR420VillejuifFrance

Personalised recommendations