Journal of Optimization Theory and Applications

, Volume 95, Issue 3, pp 717–722

Characterization of R-Evenly Quasiconvex Functions

  • J. E. Martínez-Legaz
Article

Abstract

A function defined on a locally convex space is called evenly quasiconvex if its level sets are intersections of families of open half-spaces. Furthermore, if the closures of these open halfspaces do not contain the origin, then the function is called R-evenly quasiconvex. In this note, R-evenly quasiconvex functions are characterized as those evenly-quasiconvex functions that satisfy a certain simple relation with their lower semicontinuous hulls.

Quasiconvex functions duality generalized conjugation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    THACH, P. T., Diewert-Crouzeix Conjugation for General Quasiconvex Duality and Applications, Journal of Optimization Theory and Applications, Vol. 86, pp. 719–743, 1995.Google Scholar
  2. 2.
    DIEWERT, W. E., Duality Approaches to Microeconomic Theory, Handbook of Mathematical Economics, Edited by K. J. Arrow and M. D. Intriligator, North Holland, Amsterdam, Netherlands, Vol. 2, pp. 535–599, 1982.Google Scholar
  3. 3.
    FENCHEL, W., A Remark on Convex Sets and Polarity, Communications du Séminaire Mathématique de l'Université de Lund, Supplement, pp. 82–89, 1952.Google Scholar
  4. 4.
    MARTINEZ-LEGAZ, J. E., A Generalized Concept of Conjugation, Optimization: Theory and Algorithms, Edited by A. Auslender, J. B. Hiriart-Urruty, and W. Oettli, Marcel Dekker, New York, New York, pp. 45–59, 1983.Google Scholar
  5. 5.
    PASSY, U., and PRISMAN, E. Z., Conjugacy in Quasiconvex Programming, Mathematical Programming, Vol. 30, pp. 121–146, 1984.Google Scholar
  6. 6.
    MARTINEZ-LEGAZ, J. E., Quasiconvex Duality Theory by Generalized Conjugation Methods, Optimization, Vol. 19, pp. 603–652, 1988.Google Scholar
  7. 7.
    MARTINEZ-LEGAZ, J. E., Duality between Direct and Indirect Utility Functions under Minimal Hypotheses, Journal of Mathematical Economics, Vol. 20, pp. 199–209, 1991.Google Scholar
  8. 8.
    MARTINEZ-LEGAZ, J. E., and SANTOS, M. S., Duality between Direct and Indirect Preferences, Economic Theory, Vol. 3, pp. 335–351, 1993.Google Scholar
  9. 9.
    CROUZEIX, J. P., Continuity and Differentiability Properties of Quasiconvex Functions on R n, Generalized Concavity in Optimization and Economics, Edited by S. Schaible and W. T. Ziemba, Academic Press, New York, New York, pp. 109–130, 1982.Google Scholar
  10. 10.
    HOLMES, R. B., Geometric Functional Analysis and Its Applications, Springer Verlag, New York, New York, 1975.Google Scholar

Copyright information

© Plenum Publishing Corporation 1997

Authors and Affiliations

  • J. E. Martínez-Legaz
    • 1
  1. 1.Departament d'Economia i d'Història Económica and CODEUniversitat Autònoma de BarcelonaBellaterraSpain

Personalised recommendations