Journal of Solution Chemistry

, Volume 27, Issue 3, pp 217–233 | Cite as

A Viscometric and Conductometric Investigation of the Micellar and Solution Properties of Two-Headed Surfactant Systems, the Disodium 4-Alkyl-3-sulfonatosuccinates

  • Paul Wiseman
  • Catherine A. Kennedy
  • D. Gerrard Marangoni
  • Ramamurthy Palepu
Article

Abstract

A family of two-headed surfactants, the disodium 4-alkyl-3-sulfonatosuccinates, has been prepared by reacting maleic anhydride with the appropriate chain-length alcohol and subsequent addition of sodium bisulfite to the corresponding monoester. The properties of the micelles formed by these compounds in aqueous solution (aggregation numbers, degrees of counterion binding, and the cmc values) have been investigated as a function of temperature and surfactant chain length using viscosity, density, and conductance measurements. The critical micelle concentrations (cmc's) and the aggregation numbers appear to indicate that, in agreement with the earlier literature on other two-headed surfactants systems, these amphiphiles have higher cmc and lower aggregation numbers when compared to single-headed surfactants of comparable chain length. In addition, viscosity B coefficients and the thermodynamic parameters of activation of viscous flow have been determined. These results are interpreted in terms of the structure-making or -breaking properties of the surfactant amphiphiles below the cmc region. Finally, the thermodynamic properties of micelle formation have been estimated from the dependence of the cmc on the absolute temperature according to the charged pseudo-phase separation model of micelle formation. All these results are discussed in terms of how the addition of the second charged surfactant headgroup alters the micellar and solution properties of two-headed surfactants vs. their single-headed counterparts.

Two-Headed surfactants critical micelle concentration degree of counterion dissociation aggregation number conductance viscosity B-coefficients thermodynamic parameters 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    D. J. Jobe and V. C. Reinsborough, Aust. J. Chem. 34, 303 (1984).Google Scholar
  2. 2.
    D. J. Jobe and V. C. Reinsborough, Can. J. Chem. 62, 280 (1984).Google Scholar
  3. 3.
    K. Tamaki, Y. Ohara, Y. Akimoto, and K. Koshishi, Bull. Chem. Soc. Jpn. 67, 856 (1994).Google Scholar
  4. 4.
    K. Meguro, K. Ikeda, A. Otsuji, M. Taya, M. Yasuda, and K. Esumi, J. Colloid Interface Sci. 118, 372 (1987).Google Scholar
  5. 5.
    M. Frindi, B. Michels, H. Levy, and R. Zana, Langmuir 10, 1140 (1994).Google Scholar
  6. 6.
    Y.-P. Zhu, A. Masuyama, Y. Kobata, Y. Nakatsuji, M. Okahara, and M. J. Rosen, J. Colloid Interface Sci. 158, 40 (1993).Google Scholar
  7. 7.
    P. A. Kooreman and J. F. B. N. Engberts, Recl. Trav. Chim. 113, 163 (1994).Google Scholar
  8. 8.
    E. J. Beck, E. K. Comeau, J. F. Caplan, C. V. Howley, and D. G. Marangoni, Can. J. Chem. 73, 1741 (1995).Google Scholar
  9. 9.
    H. von Berlepsch, K. Stähler, and R. Zana, Langmuir 12, 5033 (1996).Google Scholar
  10. 10.
    K. Tamaki, Y. Ohara, N. Ogawa, Y. Domae, T. Kurokawa, Bull. Chem. Soc. Jpn. 67, 2867 (1994).Google Scholar
  11. 11.
    L. Qiao and A. J. Easteal, Colloid Polymer Sci. 274, 974 (1996).Google Scholar
  12. 12.
    L. Ambrosone, L. Costantino, G. Derrico, and V. Vitagliano, J. Solution Chem. 25, 757 (1996).Google Scholar
  13. 13.
    R. Palepu and H. MacDonald, Thermochim. Acta 87, 151 (1985).Google Scholar
  14. 14.
    R. Palepu and G. Marangoni, J. Chem. Eng. Data 32, 314 (1987).Google Scholar
  15. 15.
    P. Mukerjee and K. J. Mysels. Critical Micelle Concentrations for Aqueous Surfactant Systems US-NBS, No. 36. (U.S. GPO, Washington, D.C., 1971).Google Scholar
  16. 16.
    N. M. Van Os, J. R. Haak, and L. A. M. Rupert, Physico-Chemical Properties of Selected Anionic, Cationic, and Nonionic Surfactants (Elsevier, Amsterdam, 1993).Google Scholar
  17. 17.
    N. Muller, Langmuir 9, 96 (1993).Google Scholar
  18. 18.
    E. Guth and R. Simha, Kolloid Z. 74, 266 (1936).Google Scholar
  19. 19.
    D. A. W. Adair, R. J. Hicks, D. J. Jobe, and V. C. Reinsborough, Aust. J. Chem. 36, 1021 (1983).Google Scholar
  20. 20.
    I. G. Watterson and L. R. White, J. Chem. Soc. Faraday Trans. II, 77, 1115 (1981).Google Scholar
  21. 21.
    E. W. Anacker, in Cationic Surfactants, E. Jungerman, ed., Surface Sci. Ser. No 4 (Marcel Dekker, New York, 1970).Google Scholar
  22. 22.
    H. J. Evans. J. Chem. Soc. 1956, 579.Google Scholar
  23. 23.
    A. Malliaris, J. Le Moigne, J. Sturm, and R. Zana, J. Phys. Chem. 89, 2709 (1985).Google Scholar
  24. 24.
    K. Shinoda, T. Nakagawa, B. Tamamushi, and T. Isemura, in Colloidal Surfactants (Academic Press, New York, 1963), p. 44.Google Scholar
  25. 25.
    D. Jones and M. Dole, J. Am. Chem. Soc. 51, 2950 (1929).Google Scholar
  26. 26.
    S. W. Goldsack and G. Franchetto, Can. J. Chem. 55, 1062 (1977).Google Scholar
  27. 27.
    B. R. Breslau and I. F. Miller J. Phys. Chem. 74, 1056 (1970).Google Scholar
  28. 28.
    S. Paljk and C. J. Klofutar, J. Chem. Soc. Faraday Trans I, 74, 2159 (1978).Google Scholar
  29. 29.
    J. E. Desnoyers and G. Perron, J. Solution Chem. 1, 198 (1972).Google Scholar
  30. 30.
    R. H. Stokes and R. Mills, Viscosity and Related Properties (Pergamon Press, New York, 1965).Google Scholar
  31. 31.
    S. Gladstone, K. J. Laidler, and H. Eyring, The Theory of Rate Processes (McGraw-Hill, New York, 1941).Google Scholar
  32. 32.
    R. Zana, Langmuir 12, 1208 (1996).Google Scholar
  33. 33.
    M. J. Doyle, D. G. Marangoni, and R. Palepu, to appear.Google Scholar

Copyright information

© Plenum Publishing Corporation 1998

Authors and Affiliations

  • Paul Wiseman
    • 1
  • Catherine A. Kennedy
    • 1
  • D. Gerrard Marangoni
    • 1
  • Ramamurthy Palepu
    • 1
  1. 1.Deptartment of ChemistrySt Francis Xavier UniversityAntigonish

Personalised recommendations