Journal of Chemical Ecology

, Volume 29, Issue 2, pp 357–376 | Cite as

Effect of Conspecific and Heterospecific Feces on Foraging and Oviposition of Two Predatory Ladybirds: Role of Fecal Cues in Predator Avoidance

  • Basant K. AgarwalaEmail author
  • Hironori Yasuda
  • Yukie Kajita


Growing evidence suggests a flow of chemical information from higher to lower trophic levels that affects foraging and oviposition of ‘prey’ in response to potential risks from predators. This was investigated in two species of ladybird predators of aphids, Harmonia axyridis and Propylea japonica. H. axyridis is known to be the stronger intraguild predator and P. japonica to be the more frequent intraguild prey in interactions of these two species. These ladybirds share aphid prey on mugworts, hibiscus, and Italian ryegrasses in fields of northern Japan but largely avoid each other on the same plant. Fecal cues of these ladybird predators were found to contribute in their assessment of predation risk from conspecific and heterospecific competitors in common habitats. Gravid females of H. axyridis reduced rates of feeding and oviposition when exposed to feces of conspecifics, but not when exposed to feces of P. japonica. In contrast, gravid females of P. japonica reduced feeding and oviposition when exposed to feces of both H. axyridis and its own species. Females of both ladybird species exhibited similar behavior in response to water extracts of feces. For P. japonica, the influence of heterospecific feces was greater than that of conspecific feces. Our results demonstrate that feces of ladybirds contain odors that have the potential to deter the feeding and oviposition activities of conspecific as well as heterospecific ladybirds. Such deterrence allows these insects to avoid predation risk. Differences in responses of the two predators are discussed.

Foraging behavior ladybird predators aphid prey predator avoidance feces chemical cues 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aegolopoulos, N. G., Dicke, M., and Posthumus, M. A. 1995. Role of volatile inforchemicals emitted by feces of larvae in host-searching behavior of parasitoid Cotesia rubecula (Hymenoptera: Braconidae): a behavioral and chemical study. J. Chem. Ecol. 21:1789–1811.Google Scholar
  2. Agarwala, B. K. 1991. Why do ladybirds (Coleoptera: Coccinellidae) cannibalise? J. Biosci. 16:103–109.Google Scholar
  3. Agarwala, B. K. and Bardhanroy, P. 1999. Numerical response of ladybird beetles (Col., Coccinellidae) to aphid prey (Hom., Aphididae) in a field bean in north-east India. J. Appl. Entomol. 123:401–405.Google Scholar
  4. Agarwala, B. K. and Dixon, A. F. G. 1992. Laboratory study of cannibalism and interspecific predation in ladybirds. Ecol. Entomol. 17:303–309.Google Scholar
  5. Agarwala, B. K. and Yasuda, H. 2001. Larval interactions in aphidophgaous predators: effectiveness of wax cover as defence shield of Scymnus larvae against predation from syrphids. Entomol. Exp. Appl. 100:101–107.Google Scholar
  6. Agarwala, B. K., Bhattacharya, S., and Bardhanroy, P. 1998. Who eats whose eggs? Intra versus interspecific interactions in starving ladybird beetles predaceous on aphids. Ethol. Ecol. Evol. 10:361–368.Google Scholar
  7. Anderson, P., Hilker, M., Hansson, B. S., Bombosch, S., Klein, B., and Schildknecht, H. 1993. Oviposition deterring components in larval frass of Spodoptera littoralis (Boisd.) (Lepidoptera: Noctuidae): a behavioural and electrophysiological evaluation. J. Insect Physiol. 39:129–137.Google Scholar
  8. Dicke, M. 2000. Chemical ecology of host-plant selection by herbivorous arthropods: amultitrophic perspective. Biochem. Syst. Ecol. 28:601–617.Google Scholar
  9. Dicke, M. and Grostal, P. 2001. Natural enemies detection Annu. Rev. Ecol. Syst. 32:1–23.Google Scholar
  10. Dixon, A. F. G. 1997. Patch quality and fitness in predatory ladybirds. Ecol. Stud. 130:205–223.Google Scholar
  11. Dixon, A. F. G. 1998. Aphid Ecology: An Optimisation Approach. Chapman & Hall, London.Google Scholar
  12. Dixon, A. F. G. 2000. Insect Predator–Prey Dynamics: Ladybird Beetles and Biological Control. Cambridge University Press, Cambridge.Google Scholar
  13. Doumbia, M., Hemptinne, J.-L., and Dixon, A. F. G. 1998. Assessment of patch quality by ladybirds: role of larval tracks. Oecologia 113:197–202.Google Scholar
  14. Grewal, P. S., Gaugler, R., and Selvan, S. 1993. Host recognition by entomopathogenic nematodes: Behavioural response to contact with host feces. J. Chem. Ecol. 19:1219–1231.Google Scholar
  15. Grostal, P. and Dicke, M. 1999. Direct and indirect cues of predation risk influence behavior and reproduction of prey: A case for acarine interactions. Behav. Ecol. 10:422–427.Google Scholar
  16. Grostal, P. and Dicke, M. 2000. Recognising one's enemies: A functional approach to risk assessment by prey. Behav. Ecol. Sociobiol. 47:258–264.Google Scholar
  17. Gutierrez, J., Baumgaertner, J. U., and Summers, C. G. 1984. Multitrophic models of predator–prey energetics. Can. Entomol. 116:923–963.Google Scholar
  18. Hemptinne, J.-L. and Dixon, A. F. G. 2000. Defence, oviposition and sex: semiochemical parsimony in two species of ladybird beetles (Coleoptera, Coccinellidae)? A short review. Eur. J. Entomol. 97:443–447.Google Scholar
  19. Hemptinne, J.-L., Logany, G., and Dixon, A. F. G. 1998. Mate recognition in the two-spot ladybird beetle, Adalia bipunctata: role of chemical and behavioural cues. J. Insect Physiol. 44:1163–1171.Google Scholar
  20. Hemptinne, J.-L., Logany, G., Doumbia, M., and Dixon, A. F. G. 2001. Chemical nature and persistence of the oviposition deterring pheromone in the tracks of the larvae of the two spot ladybird, Adalia bipunctata (Coleoptera: Coccinellidae). Chemoecology 11:43–47.Google Scholar
  21. Hilker, M. 1985. Larvenkot als Eiablage-Deterrens bei Spodoptera littoralis. Naturwissenschaften 72:485–486.Google Scholar
  22. Hilker, M. and Klein, B. 1989. Investigation of oviposition deterrent in the larval frass of Spodoptera littoralis (Boisd.). J. Chem. Ecol. 15:929–938.Google Scholar
  23. Hironori, Y. and Katsuhiro, S. 1997. Cannibalism and interspecific predation in two predatory ladybirds in relation to prey abundance in the field. Entomophaga 42:153–163.Google Scholar
  24. Hodek, I. and Honek, A. 1996. Ecology of Coccinellidae. Kluwer Academic, Dordrecht, The Netherlands.Google Scholar
  25. Kats, L. B. and Dill, L. M. 1998. The scent of death: chemosensory assessment of predation risk by prey animals. Ecol. Sci. 5:361–394.Google Scholar
  26. Kindlmann, P. and Dixon, A. F. G. 1993. Optimal foraging in ladybird beetles (Coleoptera: Coccinellidae) and its consequences for their use in biological control. Eur. J. Entomol. 90:443–450.Google Scholar
  27. Krebs, J. R. and Davies, N. B. 1987. An Introduction to Behavioural Ecology. Blackwell Scientific, Oxford.Google Scholar
  28. Lucas, E., Coderre, P., and Brodeur, J. 1997. Instar-specific defense of Coleomegilla maculata lengi (Col.: Coccinellidae): influence on attack success of the intraguild predator Chrysoperla rufilabris (Neur.: Chrysopidae). Entomophaga 42:3–12.Google Scholar
  29. Müller, C. and Hilker, M. 1999. Unexpected reactions of a generalist predator towards defensive devices of cassidine larvae (Coleoptera, Chrysomelidae). Oecologia 118:166–172.Google Scholar
  30. Nolte, D. I., Mason, J. R., Epple, G., Aronov, E., and Campbell, D. L. 1994. Why are predator urines aversive to prey? J. Chem. Ecol. 20:1505–1516.Google Scholar
  31. Obrycki, J. J., Giles, K. L., and Ormord, A. M. 1998a. Experimental assessment of interactions between larval Coleomegilla maculata and Coccinella septempunctata (Coleoptera: Coccinellidae) in field cages. Environ. Entomol. 27:1280–1288.Google Scholar
  32. Obrycki, J. J., Giles, K. L., and Ormord, A. M. 1998b. Interactions between an introduced and indigenous coccinellid species at different prey densities. Oecologia 117:279–285.Google Scholar
  33. Olmstead, K. L. 1994. Waste products as chrysomelid defenses, pp. 311–318, in P. H. Jolivet, M. L. Cox, and E. Petitpierre (Eds.). Novel Aspects of the Biology of Chrysomelidae. Kluwer Academic, Dordrecht, The Netherlands.Google Scholar
  34. Phoofolo, M. W. and Obrycki, J. J. 1998. Potential for intraguild predation and competition among predatory Coccinellidae and Chrysopidae. Entomol. Exp. Appl. 89:47–55.Google Scholar
  35. Polis, G. A., Myers, C. A., and Holt, R. D. 1989. The ecology and evolution of intraguild predation: potential competitors that eat each other. Annu. Rev. Ecol. Syst. 20:297–330.Google Scholar
  36. Prokopy, R. J., Roitberg, B. D., and Averill, A. L. 1984. Resource partitioning, pp. 301–330, in W. J. Bell, and R. T. Carde (Eds.). Chemical Ecology of Insects. Chapman & Hall, London.Google Scholar
  37. Renwick, J. A. A. and Radke, C. D. 1980. An oviposition deterrent associated with frass from feeding larvae of the cabbage looper, Trichoplusia ni (Lepidoptera: Noctuidae). Environ. Entomol. 9:318–320.Google Scholar
  38. Rosenheim, J. A., Kaya, H. K., Ehler, L. E., Marois, J. J., and Jaffee, B. 1995. Intraguild predation among biological control agents: theory and evidence. Biol. Control 5:303–335.Google Scholar
  39. Růžička, Z. 1994. Oviposition-deterring pheromones in Chrysopa oculata (Neuroptera: Chrysopidae). Eur. J. Entomol. 91:361–370.Google Scholar
  40. Růžička, Z. 1996. Oviposition-deterring pheromone in Chrysopidae (Neuroptera): Intra-and interspecific effects. Eur. J. Entomol. 93:161–166.Google Scholar
  41. Růžička, Z. 1997a. Persistence of the oviposition-deterring pheromone in Chrysopa oculata (Neur.: Chrysopidae). Entomophaga 42:109–114.Google Scholar
  42. Růžička, Z. 1997b. Recognition of oviposition-deterring allomones by aphidophagous predators (Neuroptera: Chrysopidae, Coleoptera: Coccinellidae). Eur. J. Entomol. 94:431–434.Google Scholar
  43. Růžička, Z. 1998. Further evidence of oviposition-deterring allomone in chrysopids (Neuroptera: Chrysopidae). Eur. J. Entomol. 95:35–39.Google Scholar
  44. Růžička, Z. 2001. Oviposition responses of aphidophagous coccinellids to tracks of ladybird (Coleoptera: Coccinellidae) and lacewing (Neuroptera: Chrysopidae) larvae. Eur. J. Entomol. 98:183–188.Google Scholar
  45. Růžička, Z. and Havelka, J. 1998. Effects of oviposition-deterring pheromone and allomones on Aphidoletes aphidimyza (Diptera: Cecidomyiidae). Eur. J. Entomol. 95:211–216.Google Scholar
  46. Takahashi, K. 1989. Intra-and interspecific predations of lady beetles in spring alfalfa fields. Jpn. J. Appl. Entomol. Zool. 57:199–203.Google Scholar
  47. Whitman, D. W., Blum, M. S., and Alsop, D. W. 1990. Allomones: chemicals for defense, pp 289–351, in D. L. Evans, and Schmidt, J. O. (Eds.) Insect Defenses: Adaptive Mechanisms and Strategies of Prey and Predators. State University of New York Press, Albany, New York.Google Scholar
  48. Yasuda, H. and Ohnuma, N. 1999. Effect of cannibalism and predation on the larval performance of two ladybird beetles. Entomol. Exp. Appl. 93:63–67.Google Scholar
  49. Yasuda, H., Takagi, T., and Kogi, K. 2000. Effects of conspecific and heterospecific larval tracks on the oviposition behavior of the predatory ladybird, Harmonia axyridis (Coleoptera: Coccinellidae). Eur. J. Entomol. 97:551–553.Google Scholar

Copyright information

© Plenum Publishing Corporation 2003

Authors and Affiliations

  • Basant K. Agarwala
    • 1
    Email author
  • Hironori Yasuda
    • 2
  • Yukie Kajita
    • 2
  1. 1.Department of Life ScienceTripura University, AgartalaTripuraIndia
  2. 2.Faculty of AgricultureYamagata University, TsuruokaYamagataJapan

Personalised recommendations