Advertisement

Journal of Bioenergetics and Biomembranes

, Volume 29, Issue 2, pp 109–119 | Cite as

Nuclear Control of Respiratory Chain Expression in Mammalian Cells

  • Richard C. Scarpulla
Article

Abstract

The majority of gene products required for mitochondrial respiratory function are encoded in the nuclear genome. These include most of the respiratory subunits and all of the proteins that regulate the mitochondrial genetic system. One approach to understanding nucleo-mitochondrial interactions in mammalian cells is to identify the nuclear transcription factors that are common to the expression of these gene products. This has led to the purification and molecular cloning of nuclear respiratory factors, NRF-1 and NRF-2. The DNA binding and transcriptional specificities of these proteins have implicated them in the expression of many respiratory subunits along with key components of the mitochondrial transcription, replication, and heme biosynthetic machinery. In addition, tissue-specific transcription factors have been linked to the coordinate synthesis of contractile proteins and muscle-specific respiratory subunits whereas other more ubiquitous factors may have a dual function in nuclear and mitochondrial gene activation. These findings provide a framework for further investigations of the nuclear genetic mechanisms that integrate the expression of the respiratory apparatus with that of other cellular systems during growth and development.

ETS domain gene expression mammalian cells mitochondria nuclear respiratory factors oxidative phosphorylation regulation respiratory chain transcription 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. Ammendola, R., Fiore, F., Esposito, F., Caserta, G., Mesuraca, M., Russo, T., and Cimino, F. (1995). FEBS Lett. 371, 209–213.Google Scholar
  2. Antoshechkin, I., and Bogenhagen, D. F. (1995). Mol. Cell. Biol. 15, 7032–7042.Google Scholar
  3. Bachman, N. J., Yang, T. L., Dasen, J. S., Ernst, R. E., and Lomax, M. I. (1996). Arch. Biochem. Biophys. 333, 152–162.Google Scholar
  4. Braidotti, G., Borthwick, I. A., and May, B. K. (1993). J. Biol. Chem. 268, 1109–1117.Google Scholar
  5. Carter, R. S., Bhat, N. K., Basu, A., and Avadhani, N. G. (1992). J. Biol. Chem. 267, 23418–23426.Google Scholar
  6. Carter, R. S., and Avadhani, N. G. (1994). J. Biol. Chem. 269, 4381–4387.Google Scholar
  7. Chau, C. A., Evans, M. J., and Scarpulla, R. C. (1992). J. Biol. Chem. 267, 6999–7006.Google Scholar
  8. Chrzanowska-Lightowlers, Z. M. A., Preiss, T., and Lightowlers, R. N. (1994). J. Biol. Chem. 269, 27322–27328.Google Scholar
  9. Chung, A. B., Stepien, G., Haraguchi, Y., Li, K., and Wallace, D. C. (1992). J. Biol. Chem. 267, 21154–21161.Google Scholar
  10. Clayton, D. A. (1992). Int. Rev. Cytol. 141, 217–232.Google Scholar
  11. Cooper, J. M., Wischik, C., and Schapira, A. H. V. (1993). Lancet 341, 969–970.Google Scholar
  12. Daga, A., Micol, V., Hess, D., Aebersold, R., and Attardi, G. (1993). J. Biol. Chem. 268, 8123–8130.Google Scholar
  13. Davis, A. F., Ropp, P. A., Clayton, D. A., and Copeland, W. C. (1996). Nucleic Acids Res. 24, 2753–2759.Google Scholar
  14. Demonacos, C., Tsawdaroglou, N., Djordjevic-Markovic, R., Papalopoulou, M., Galanopoulos, V., Papadogeorgaki, S., and Sekeris, C. E. (1993). J. Steroid Biochem. Mol. Biol. 46, 401–413.Google Scholar
  15. Demonacos, C., Djordjevic-Markovic, R., Tsawdaroglou, N., and Sekeris, C. E. (1995). J. Steroid Biochem. Mol. Biol. 55, 43–55.Google Scholar
  16. Desimone, S. M., and White, K. (1993). Mol. Cell. Biol. 13, 3641–3949.Google Scholar
  17. Diffley, J. F., and Stillman, B. (1991). Proc. Natl. Acad. Sci. USA 88, 7864–7868.Google Scholar
  18. Diffley, J. F. X., and Stillman, B. (1992). J. Biol. Chem. 267, 3368–3374.Google Scholar
  19. Evans, M. J., and Scarpulla, R. C. (1988). Mol. Cell. Biol. 8, 35–41.Google Scholar
  20. Evans, M. J., and Scarpulla, R. C. (1989). J. Biol. Chem. 264, 14361–14368.Google Scholar
  21. Evans, M. J., and Scarpulla, R. C. (1990). Genes Dev. 4, 1023–1034.Google Scholar
  22. Fisher, R. P., and Clayton, D. A. (1988). Mol. Cell. Biol. 8, 3496–3509.Google Scholar
  23. Fisher, R. P., Topper, J. N., and Clayton, D. A. (1987). Cell 50, 247–258.Google Scholar
  24. Fisher, R. P., Parisi, M. A., and Clayton, D. A. (1989). Genes Dev. 3, 2202–2217.Google Scholar
  25. Fisher, R. P., Lisowsky, T., Parisi, M. A., and Clayton, D. A. (1992). J. Biol. Chem. 267, 3358–3367.Google Scholar
  26. Forsburg, S. L. and Guarente, L. (1989). Genes Dev. 3, 1166–1178.Google Scholar
  27. Genuario, R. R., and Perry, R. P. (1996). J. Biol. Chem. 271, 4388–4395.Google Scholar
  28. Genuario, R. R., Kelley, D. E., and Perry, R. P. (1993). Gene Expr. 3, 279–288.Google Scholar
  29. Ghivizzani, S. C., Madsen, C. S., and Hauswirth, W. W. (1993). J. Biol. Chem. 268, 8675–8682.Google Scholar
  30. Gomez-Cuadrado, A., Martin, M., Noel, M., and Ruiz-Carrillo, A. (1995). Mol. Cell Biol. 15, 6670–6685.Google Scholar
  31. Gopalakrishnan, L., and Scarpulla, R. C. (1994). J. Biol. Chem. 269, 105–113.Google Scholar
  32. Gopalakrishnan, L., and Scarpulla, R. C. (1995). J. Biol. Chem. 270, 18019–18025.Google Scholar
  33. Gugneja, S., Virbasius, J. V., and Scarpulla, R. C. (1995). Mol. Cell. Biol. 15, 102–111.Google Scholar
  34. Gugneja, S., Virbasius, C. A., and Scarpulla, R. C. (1996). Mol. Cell. Biol. 16, 5708–5716.Google Scholar
  35. Haraguchi, Y., Chung, A. B., Neill, S., and Wallace, D. C. (1994). J. Biol. Chem. 269, 9330–9334.Google Scholar
  36. Heddi, A., Lestienne, P., Wallace, D. C., and Stepien, G. (1993). J. Biol. Chem. 268, 12156–12163.Google Scholar
  37. Hess, J. F., Parisi, M. A., Bennett, J. L., and Clayton, D. A. (1991). Nature 351, 236–239.Google Scholar
  38. Hoog, C., Calzone, F. J., Cutting, A. E., Britten, R. J., and Davidson, E. H. (1991). Development 112, 351–364.Google Scholar
  39. Jaehning, J. A. (1993). Mol. Microbiol. 8, 1–4.Google Scholar
  40. Kruse, B., Narasimhan, N., and Attardi, G. (1989). Cell 58, 391–397.Google Scholar
  41. Ku, C. Y., Lu, Q., Ussuf, K. K., Weinstock, G. M., and Sanborn, B. M. (1991). Mol. Endocrinol. 5, 1669–1676.Google Scholar
  42. LaMarco, K., Thompson, C. C., Byers, B. P., Walton, E. M., and McKnight, S. L. (1991). Science 253, 789–792.Google Scholar
  43. Larsson, N. G., and Clayton, D. A. (1995). Annu. Rev. Genet. 29, 151–178.Google Scholar
  44. Larsson, N.-G., Oldfors, A., Holme, E., and Clayton, D. A. (1994). Biochem. Biophys. Res. Commun. 200, 1374–1381.Google Scholar
  45. Larsson, N. G., Garman, J. D., Oldfors, A., Barsh, G. S., and Clayton, D. A. (1996). Nature Genet. 13, 296–302.Google Scholar
  46. Lenka, N., Basu, A., Mullick, J., and Avadhani, N. G. (1996). J. Biol. Chem. 271, 30281–30289.Google Scholar
  47. Li, K., Hodge, J. A., and Wallace, D. C. (1990). J. Biol. Chem. 265, 20585–20588.Google Scholar
  48. Li, K., Neufer, P. D., and Williams, R. S. (1995). Am. J. Physiol. Cell Physiol. 269, C1265–C1270.Google Scholar
  49. Liao, X., and Butow, R. A. (1993). Cell 72, 61–71.Google Scholar
  50. Linder, M. E., and Gilman, A. G. (1992). Sci. Am. 267, 56–65.Google Scholar
  51. Lomax, M. I., and Grossman, L. I. (1989). Trends Biochem. Sci. 14, 501–504.Google Scholar
  52. Lunardi, J., and Attardi, G. (1991). J. Biol. Chem. 266, 16534–16540.Google Scholar
  53. Martin, M. E., Chinenov, Y., Yu, M., Schmidt, T. K., and Yang, X.-Y. (1996). J. Biol. Chem. 271, 25617–25623.Google Scholar
  54. McNabb, D. S., Xing, Y., and Guarente, L. (1995). Genes Dev. 9, 47–58.Google Scholar
  55. Moraes, C. T., Shanske, S., Tritschler, H.-J., Aprille, J. R., Andreetta, F., Bonilla, E., Schon, E. A., and DiMauro, S. (1991). Am. J. Hum. Genet. 48, 492–501.Google Scholar
  56. Olson, E. N. (1993). Mol. Endocrinol. 7, 1369–1378.Google Scholar
  57. Parisi, M. A., and Clayton, D. A. (1991). Science 252, 965–969.Google Scholar
  58. Parisi, M. A., Xu, B., and Clayton, D. A. (1993). Mol. Cell. Biol. 13, 1951–1961.Google Scholar
  59. Scarpulla, R. C. (1996). Trends Cardiovasc. Med. 6, 39–45.Google Scholar
  60. Scarpulla, R. C., Kilar, M. C., and Scarpulla, K. M. (1986). J. Biol. Chem. 261, 4660–4662.Google Scholar
  61. Seelan, R. S., Gopalakrishnan, L., Scarpulla, R. C., and Grossman, L. I. (1996). J. Biol. Chem. 271, 2112–2120.Google Scholar
  62. Shadel, G. S., and Clayton, D. A. (1993). J. Biol. Chem. 268, 16083–16086.Google Scholar
  63. Shyjan, A. W., and Butow, R. A. (1993). Curr. Biol. 3, 398–400.Google Scholar
  64. Suzuki, H., Hosokawa, Y., Toda, H., Nishikimi, M., and Ozawa, T. (1990). J. Biol. Chem. 265, 8159–8163.Google Scholar
  65. Suzuki, H., Hosokawa, Y., Nishikimi, M., and Ozawa, T. (1991). J. Biol. Chem. 266, 2333–2338.Google Scholar
  66. Suzuki, H., Suzuki, S., Kumar, S., and Ozawa, T. (1995). Biochem. Biophys. Res. Commun. 213, 204–210.Google Scholar
  67. Thompson, C. C., Brown, T. A., and McKnight, S. L. (1991). Science 253, 762–768.Google Scholar
  68. Tomura, H., Endo, H., Kagawa, Y., and Ohta, S. (1990). J. Biol. Chem. 265, 6525–6527.Google Scholar
  69. Torroni, A., Stepien, G., Hodge, J. A., and Wallace, D. C. (1990). J. Biol. Chem. 265, 20589–20593.Google Scholar
  70. Villena, J. A., Martin, I., Viñas, O., Cormand, B., Iglesias, R., Mampel, T., Giralt, M., and Villarroya, F. (1994). J.Biol. Chem. 269, 32649–32654.Google Scholar
  71. Virbasius, J. V., and Scarpulla, R. C. (1991). Mol. Cell. Biol. 11, 5631–5638.Google Scholar
  72. Virbasius, J. V., and Scarpulla, R. C. (1994). Proc. Natl. Acad. Sci. USA 91, 1309–1313.Google Scholar
  73. Virbasius, C. A., Virbasius, J. V., and Scarpulla, R. C. (1993a). Genes Dev. 7, 2431–2445.Google Scholar
  74. Virbasius, J. V., Virbasius, C. A., and Scarpulla, R. C. (1993b). Genes Dev. 7, 380–392.Google Scholar
  75. Wallace, D. C. (1992). Annu. Rev. Biochem. 61, 1175–1212.Google Scholar
  76. Wan, B., and Moreadith, R. W. (1995). J. Biol. Chem. 270, 26433–26440.Google Scholar
  77. Wasylyk, B., Hahn, S. L., and Giovane, A. (1993). Eur. J. Biochem. 211, 7–18.Google Scholar
  78. Watanabe, H., Sawada, J.-I., Yano, K.-I., Yamaguchi, K., Goto, M., and Handa, H. (1993). Mol. Cell. Biol. 13, 1385–1391.Google Scholar
  79. Williams, R. S., Garcia-Moll, M., Mellor, J., Salmons, S., and Harlan, W. (1987). J. Biol. Chem. 262, 2764–2767.Google Scholar
  80. Wrutniak, C., Cassar-Malek, I., Marchal, S., Rascle, A., Heusser, S., Keller, J. M., Flechon, J., Dauca, M., Samarut, J., Ghysdael, J., and Cabello, G. (1995). J. Biol. Chem. 270, 16347–16354.Google Scholar
  81. Zeviani, M., Servidei, S., Gellera, C., Bertini, E., DiMauro, S., and DiDonato, S. (1989). Nature 339, 309–311.Google Scholar
  82. Zitomer, R. S., and Lowry, C. V. (1992). Microbiol. Rev. 56, 1–11.Google Scholar

Copyright information

© Plenum Publishing Corporation 1997

Authors and Affiliations

  • Richard C. Scarpulla
    • 1
  1. 1.Department of Cell and Molecular BiologyNorthwestern Medical SchoolChicago

Personalised recommendations