Nonstationary Iterated Tikhonov Regularization

  • M. Hanke
  • C. W. Groetsch


A convergence rate is established for nonstationary iterated Tikhonov regularization, applied to ill-posed problems involving closed, densely defined linear operators, under general conditions on the iteration parameters. It is also shown that an order-optimal accuracy is attained when a certain a posteriori stopping rule is used to determine the iteration number.

Ill-posed problems Tikhonov regularization Lardy's method discrepancy principle 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hofmann, B., Regularization for Applied Inverse and Ill-Posed Problems, Teubner, Leipzig, Germany, 1986.Google Scholar
  2. 2.
    Groetsch, C. W., Inverse Problems in Mathematical Sciences, Vieweg, Braunschweig, Germany, 1993.Google Scholar
  3. 3.
    Louis, A. K., Inverse und schlecht gestellte Probleme, Teubner, Stuttgart, Germany, 1989.Google Scholar
  4. 4.
    Groetsch, C. W., The Theory of Tikhonov Regularization for Fredholm Equations of the First Kind, Pitman, Boston, Massachusetts, 1984.Google Scholar
  5. 5.
    Kryanev, A. V., An Iterative Method for Solving Incorrectly Posed Problems, USSR Computational Mathematics and Mathematical Physics, Vol. 14, pp. 24–33, 1974.Google Scholar
  6. 6.
    King, J. T., and Chillingworth, D., Approximation of Generalized Inverses by Iterated Regularization, Numerical Functional Analysis and Optimization, Vol. 1, pp. 499–513, 1979.Google Scholar
  7. 7.
    Fakeev, A. G., A Class of Iterative Processes for Solving Degenerate Systems of Linear Algebraic Equations, USSR Computational Mathematics and Mathematical Physics, Vol. 21, pp. 15–22, 1981.Google Scholar
  8. 8.
    Brill, M., and Schock, E., Iterative Solution of Ill-Posed Problems: A Survey, Model Optimization in Exploration Geophysics, Edited by A. Vogel, Vieweg, Braunschweig, Germany, pp. 13–38, 1987.Google Scholar
  9. 9.
    Schock, E., Implicit Iterative Methods for the Approximate Solution of Ill-Posed Problems, Bollettino della Unione Matematica Italiana, Serie 1B, Vol. 7, pp. 1171–1184, 1987.Google Scholar
  10. 10.
    Lardy, L. J., A Series Representation for the Generalized Inverse of a Closed Linear Operator, Atti della Accademia Nazionale dei Lincei, Rendiconti della Classe di Scienze Fisiche, Matematiche, e Naturali, Serie VIII, Vol. 58, pp. 152–157, 1975.Google Scholar
  11. 11.
    Tikhonov, A. N., and Arsenin, V. Y., Solutions of Ill-Posed Problems, Winston, New York, New York, 1977.Google Scholar
  12. 12.
    Brakhage, H., Personal Communication, 1993.Google Scholar
  13. 13.
    Riesz, F., and Sz. Nagy, B., Functional Analysis, Ungar, New York, New York, 1955.Google Scholar
  14. 14.
    Xi, Z., Iterated Tikhonov Regularization for Linear Ill-Posed Problems, Dissertation, Universität Kaiserslautern, Kaiserslautern, Germany, 1993.Google Scholar
  15. 15.
    Dautray, R., and Lions, J. L., Mathematical Analysis and Numerical Methods for Science and Technology, Vol. 3, Springer Verlag, Berlin, Germany, 1990.Google Scholar
  16. 16.
    Vainikko, G. M., The Discrepancy Principle for a Class of Regularization Methods, USSR Computational Mathematics and Mathematical Physics, Vol. 22, pp. 1–19, 1982.Google Scholar
  17. 17.
    Hanke, M., Accelerated Landweber Iterations for the Solution of Ill-Posed Equations, Numerische Mathematik, Vol. 60, pp. 341–375, 1991.Google Scholar
  18. 18.
    Vainikko, G. M., The Critical Level of Discrepancy in Regularization Methods, USSR Computational Mathematics and Mathematical Physics, Vol. 23, pp. 1–9, 1983.Google Scholar
  19. 19.
    Plato, R., Optimal Algorithms for Linear Ill-Posed Problems Yield Regularization Methods, Numerical Functional Analysis and Optimization, Vol. 11, pp. 111–118, 1990.Google Scholar
  20. 20.
    Hanke, M., and Hansen, P. C., Regularization Methods for Large-Scale Problems, Surveys on Mathematics for Industry, Vol. 3, pp. 253–315, 1993.Google Scholar
  21. 21.
    Engl, H. W., and Gfrerer, H., A Posteriori Parameter Choice for General Regularization Methods for Solving Linear Ill-Posed Problems, Applied Numerical Mathematics, Vol. 4, pp. 395–417, 1988.Google Scholar
  22. 22.
    Raus, T., The Principle of the Residual in the Solution of Ill-Posed Problems with Nonselfadjoint Operator, Acta et Commentationes Universitatis Tartuensis, Vol. 715, pp. 12–20, 1985 (in Russian).Google Scholar

Copyright information

© Plenum Publishing Corporation 1998

Authors and Affiliations

  • M. Hanke
    • 1
  • C. W. Groetsch
    • 2
  1. 1.Fachbereich Mathematik, Universität KaiserslauternKaiserslauternGermany
  2. 2.Department of Mathematical SciencesUniversity of CincinnatiCincinnati

Personalised recommendations