Advertisement

The Complex Chemical Treatment of Alumina–Silica-Containing Materials

  • I. J. Lin
  • N. Malts
  • Y. Shindler
Article

Abstract

The results of a study of the complex treatment of alumina–silica-containing materials (fly ash, low-duality bauxites, clays, kaolins, nephelines) by chemical enrichment are presented. The de-siliconization of aluminum-containing raw materials with a high silica content is based on the property of hydroaluminum silicates (which are basic silica-containing minerals) to undergo intramolecular phase changes by thermal treatment, resulting in the formation of amorphous alkali-soluble silica. Dissolution of silica is effected by leaching the heat-treated raw material with sodium hydroxide solution, whereby the alumina remains in the solid state in the form of γ-Al2O3, or α-Al2O3. The use of chemical enrichment methods enables reduction of the silica content in the raw material and utilization of the resulting material for alumina production. The effectiveness of the chemical enrichment of alumina–silica-containing material depends in large measure on the possibility of the complete and economic utilization of all valuable components of the raw material. The possible methods of utilizing silica solutions for the production of valuable materials and methods of regenerating alkali from the silica solution are also considered.

Thermal treatment leaching alumina silica chemical enrichment 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    M. J. Murtha and G. Burnet, in Proc. 5th Int. Ash. Util Symp. (U.S. Dept. Energy, 1979), pp. 68–84.Google Scholar
  2. 2.
    R. Padilla and H. I. Sohn, Light Meta 81–94 (1982).Google Scholar
  3. 3.
    I. J. Lin and N. S. Malts, J. Mater. Synth. Process. 4, 225–282 (1996).Google Scholar
  4. 4.
    W. A. Calhoun and Powell Report of Investigations N5042 (U.S. Bureau of Mines, 1954).Google Scholar
  5. 5.
    U.S. patent N2939764 (1960).Google Scholar
  6. 6.
    FRD patents N920185, N932424 (1954).Google Scholar
  7. 7.
    Czechoslovakian patents N97901, N97902 (1959–1961).Google Scholar
  8. 8.
    S. S. Bhovay, V. S. Sampath, and P. P. Bhatnagav, N.M.Z. Tech. J. 1(2), 30–35 (1960).Google Scholar
  9. 9.
    A. M. Kalinina, J. Inorg. Chem. IV(6), 1260–1269 (1959).Google Scholar
  10. 10.
    M. K. B. Day and V. Hill, J. Phys. Chem. 57, 946–950 (1953).Google Scholar
  11. 11.
    Ch. Alexanian, C.R. Acad. Sci. Paris 240, 1621–1622 (1955).Google Scholar
  12. 12.
    G. F. Huttig and A. Schaufel, Koll Z., Bd. 55, Hf. 2, S 199 (1931).Google Scholar
  13. 13.
    V. L. Rayzman, L. P. Ni, N. S. Malts, and S. A. Shcherban, et al., Chemical Enriching of Aluminium-Silica-Containing Raw Material (Tsvetmetinformatsiya, Moscow, 1987.)Google Scholar
  14. 14.
    M. G. Manvelan and A. A. Chanamirova, Desiliconization of Alkali Aluminate Solutions (Yerevan, Armenia, 1973), pp. 34–38.Google Scholar
  15. 15.
    L. P. Ni and V. L. Rayzman, Combinations Methods for Processing Low-Grade Aluminium-Containing Raw Material (Nauka, Alma-Ata, 1988), pp. 230–235.Google Scholar

Copyright information

© Plenum Publishing Corporation 1998

Authors and Affiliations

  • I. J. Lin
    • 1
  • N. Malts
    • 1
  • Y. Shindler
    • 1
  1. 1.Mineral Engineering Research Center, TechnionHaifaIsrael

Personalised recommendations