Advertisement

International Journal of Fracture

, Volume 113, Issue 3, pp 13–18 | Cite as

Thermal Processes During Mechanical Treatment of ZnO and ZnO-TiO2 Powders and their Role in the Formation of Defect Structure

  • M. Kakazey
  • J.G. Gonzalez-Rodriguez
  • R.S. Leder
  • B. Salazar-Hernandez
  • M. Vlasova
  • M. Ristic
  • T. Sreckovic
Article

Abstract

We used electron paramagnetic resonance (EPR) to determine the dependence of the defect structure of zinc oxide powders on the physical characteristics of admixed particles during prolonged mechanical treatment (MT). Our results demonstrate a sequential two-stage thermal process contributing to the defect structure during MT. In the first stage of MT a collective break-up process of individual ZnO particles occurs and the defects are caused by hyper-rapid thermal defects annealing (HRTDA) of the particles. The second stage of defect formation is associated with annealing effects caused by heat accumulation.

Grinding zinc oxide defect formation EPR hyper-rapid thermal defects annealing (HRTDA) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bowden, F. P. and Persson, P. A. (1961). Deformation heating and melting of solids in high-speed friction. Proceedings of the Royal Society A260, 433-451.Google Scholar
  2. Broberg, K. B. (1999). Cracks and Fracture. Academic Press, San Diego-London-Boston-New York-Tokyo-Toronto.Google Scholar
  3. Galland, D. and Herve, A. (1974). Temperature dependence of the ESR spectrum of the Zn vacancy in ZnO. Solid State Communications 14, 953-956.Google Scholar
  4. Heinicke, G. (1984). Tribochemistry. Akademie-Verlag, Berlin.Google Scholar
  5. Kakazey, N. G., Sreckovic, T. V. and Ristic, M. M. (1997). EPR-investigation of the evolution of defects in zinc oxide during tribophysical activation. Journal of Materials Science 32, 4619-4622.Google Scholar
  6. Kakazey, M. G., Melnikova, V. A., Srechkovic, T., Tomila, T. V. and Ristic, M. M. (1999). Evolution of the microstructure of disperse Zinc-oxide during tribophysical activation. Journal of Materials Science 34, 1691-1697.Google Scholar
  7. Nikitenko, V. A. (1992). Electronic paramagnetic resonance in ZnO. Applied Spectroscopy 57, 367-385.Google Scholar
  8. Roitsin, A. B. and Mayevsky, V. M. (1992). Radiospectroscopy of Solid State Surfaces (in Russian), Naukova Dumka, Kiev. Samsonov G. V. (ed.). (1982). The oxide handbook. IFI/Plenum, New York-Washington-London.Google Scholar
  9. Schallenberger, B. and Hausmann, A. (1976). Eigenstorstellen in elektronen bestrahlten zinkoxid. Zietschrift fur Physik B 23, 177-181.Google Scholar
  10. Shone, R. (1969). Steigerung der Aktivitat von Kristalloberflachen durch Beschus mit Feststoffkomchen. Chemie Ingenieur Technik 41, 282-288.Google Scholar
  11. Weichert, R. and Schonert, K. (1978). On the temperature rise at the tip of a fast running crack. Journal of the Mechanics and Physics of Solids 26, 151-158.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • M. Kakazey
    • 1
  • J.G. Gonzalez-Rodriguez
    • 1
  • R.S. Leder
    • 1
  • B. Salazar-Hernandez
    • 1
  • M. Vlasova
    • 1
  • M. Ristic
    • 2
  • T. Sreckovic
    • 3
  1. 1.CIICAp, UAEMCuernavaca, MorelosMexico
  2. 2.Joint Laboratory for Advanced Materials of the SASABelgradeYugoslavia
  3. 3.Joint Laboratory for Advanced Materials of the SASABelgradeYugoslavia

Personalised recommendations