Russian Microelectronics

, Volume 32, Issue 2, pp 88–90 | Cite as

Electrochemical Etching of a Niobium Film through a Thin Nanomask Formed by AFM Tip-Induced Local Oxidation

  • A. N. Red'kin
  • L. V. Malyarevich
  • I. V. Malikov
  • G. M. Mikhailov
Article

Abstract

The anodic-dissolution etching of niobium through a thin anodic-oxide mask is studied experimentally. The electrolyte is an aqueous buffer solution of ammonium fluoride. It is established that the etch rate of niobium is higher than that of the oxide by a few orders of magnitude if the surface potential is 1–1.5 V. It is shown that etching under the stated conditions with a mask formed by AFM tip-induced local oxidation enables one to make nanostructures from niobium epitaxial films of thickness up to over 50 nm.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    Nyffenegger, R.M. and Penner, R.M., Nanometer-Scale Surface Modification Using the Scanning Probe Microscope: Progress since 1991, Chem. Rev., 1997, vol. 97, no.4, pp. 1195–1230.Google Scholar
  2. 2.
    Sugimura, H. and Nakagiri, N., Scanning Probe Anodization: Nanolithography Using Thin Films of Anodically Oxidizable Materials as Resists, J. Vac. Sci. Technol., A, 1996, vol. 14, no. 3, pp. 1223–1227.Google Scholar
  3. 3.
    Avouris, P., Hertel, T., and Martel, R., Atomic Force Microscope Tip-Induced Local Oxidation of Silicon: Kinetics, Mechanism, and Nanofabrication, Appl. Phys. Lett., 1997, vol. 71, no. 2, pp. 285–287.Google Scholar
  4. 4.
    Okada, Y., Amano, S., Kawabe, M., et al., Nanoscale Oxidation of GaAs-Based Semiconductors Using Atomic Force Microscope, J. Appl. Phys., 1998, vol. 83, no. 4, pp. 1844–1847.Google Scholar
  5. 5.
    Golov, E.F., Mikhailov, G.M., Red'kin, A.N., and Fioshko, A.M., Probe Nanolithography on Amorphous Hydrogenated Carbon Films, Mikroelektronika, 1998,vol. 27, no. 2, pp. 97–102.Google Scholar
  6. 6.
    Martel, R., Schmidt, T., Sandstrom, R.L., and Avouris, P., Current-Induced Nanochemistry: Local Oxidation of Thin Metal Films, J. Vac. Sci. Technol., A, 1999, vol. 17, no. 4, pp. 1451–1456.Google Scholar
  7. 7.
    Red'kin, A.N., Malikov, I.V., Malyarevich, L.V., Chernykh, A.V., and Mikhailov, G.M., Nanoscale Patterning of Refractory-Metal Films by Local Oxidation with a Conducting AFM Probe, in Vserossiiskii seminar “Nanochastitsy i nanokhimiya,” tezisy dokladov (Natl. Workshop on Nanoparticles and Nanochemistry, Abstracts of Papers), Chernogolovka, Moscow oblast, Russia, 2000, p. 79.Google Scholar
  8. 8.
    Shirakashi, J., Ishii, M., Matsumoto, K., et al., Surface Modification of Niobium (Nb) by Atomic Force Microscope (AFM) Nano-Oxidation Process, Jpn. J. Appl. Phys., Part 2, 1996, vol. 35, no. 11B, pp. L1524-L1527.Google Scholar
  9. 9.
    Snow, E.S. and Campbell, P.M., AFM Fabrication of Sub-10-Nanometer Metal-Oxide Devices with In-Situ Control of Electrical Properties, Science, 1995, vol. 270, pp. 1639–1641.Google Scholar
  10. 10.
    Shirakashi, J., Matsumoto, K., Miura, N., et al., Single-Electron Transistors (SETs) with Nb/Nb Oxide System Fabricated by Atomic Force Microscope (AFM) Nano-Oxidation Process, Jpn. J. Appl. Phys., Part 2, 1997, vol. 36, no. 9AB, pp. L1257-L1260.Google Scholar
  11. 11.
    Snow, E.S., Campbell, P.M., and McMarr, P.J., AFM-Based Fabrication of Free-Standing Si Nanostructures, Nanotechnology, 1996, vol. 7, no. 4, pp. 434–437.Google Scholar

Copyright information

© MAIK Nauka/Interperiodica 2003

Authors and Affiliations

  • A. N. Red'kin
    • 1
  • L. V. Malyarevich
    • 1
  • I. V. Malikov
    • 1
  • G. M. Mikhailov
    • 1
  1. 1.Institute of Microelectronics Technology and High Purity MaterialsRussian Academy of Sciences, ChernogolovkaMoscow oblastRussia

Personalised recommendations