Journal of Solution Chemistry

, Volume 27, Issue 1, pp 89–105 | Cite as

Copper Complexation with the Mellitic Acid Series

  • Daniel E. Giammar
  • David A. Dzombak


The formation constants for copper complexes with the mellitic acid series, a series of aromatic carboxylic acids, were determined from potentiometric copper titrations. Formation constants were determined for copper complexation with hemimellitic acid, trimellitic acid, trimesic acid, pyromellitic acid, and mellitic acid at five pH values (3.00, 4.00, 5.00, 5.75, 6.75) for each organic acid. The ionic strength of the solutions was 0.1M and the temperature was 25°C for all titrations. Free copper-ion activity was monitored with an ion-specific electrode. Relevant complexation reactions and corresponding stability constants for description of the experimental data were determined by application of the nonlinear parameter optimization program FITEQL to the experimental data. Testing various possible complexes revealed that the simple 1:1 complexes of CuL and CuHL (where L represents the fully deprotonated organic ligand) could describe all of the data. The logarithms of the complex formation constants for the CuL species ranged from 2.67 for trimesic acid to 6.23 for mellitic acid, and for the CuHL species from 2.47 for trimellitic acid to 5.03 for mellitic acid. The logarithms of the extracted metal–organic ligand complex formation constants were found to correlate well with the logarithms of organic acid dissociation constants.

Formation constants stability constants copper mellitic acids carboxylic acids natural organic matter 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. E. Martell and R. M. Smith, Critical Stability Constants, Vol. 3. Other Organic Ligands (Plenum, New York, 1977).Google Scholar
  2. 2.
    U.S. Department of Commerce, Critical Stability Constants of Metal Complexes, NIST Standard Reference Database 46 (National Institute of Standards and Technology, Gaithersburg, MD, 1994).Google Scholar
  3. 3.
    E. Nieboer and W. A. E. McBryde, Can. J. Chem. 48, 2549 (1970).Google Scholar
  4. 4.
    R. M. Smith, A. E. Martell, and R. J. Motekaitis, Inorg. Chim. Acta 99, 207 (1985).Google Scholar
  5. 5.
    H. Irving and H. Rossotti, Acta Chem. Scand. 10, 72 (1956).Google Scholar
  6. 6.
    E. M. Thurman, Organic Geochemistry of Natural Waters (Kluwer Academic Publishers, 1985).Google Scholar
  7. 7.
    E. M. Perdue, in Humic Substances in Soil, Sediment, and Water, Vol. 1, Chap. 20, G. R. Aiken, D. M. McKnight, D. M. Wershaw, and R. L. McCarthy, eds. (Wiley, New York, 1985).Google Scholar
  8. 8.
    M. Taga, S. Tanaka, and M. Fukushima, Anal. Chim. Acta. 244, 281 (1991).Google Scholar
  9. 9.
    M. F. Benedetti, C. J. Milne, D. G. Kinniburgh, W. H. Van Riemsdijk, and L. K. Koopal, Environ. Sci. Technol. 29, 2 (1995).Google Scholar
  10. 10.
    E. M. Perdue and C. R. Lytle, Environ. Sci. Technol. 17, 11 (1983).Google Scholar
  11. 11.
    J. H. Ephraim, Sci. Total Environ. 108, 261 (1991).Google Scholar
  12. 12.
    J. Buffle, Complexation Reactions in Aquatic Systems (Ellis Horwood, Chichester, 1988).Google Scholar
  13. 13.
    F. M. M. Morel and J. G. Hering, in Aquatic Chemical Kinetics, W. Stumm, ed. (Wiley, New York, 1990).Google Scholar
  14. 14.
    R. F. Breault, J. A. Colman, G. R. Aiken, and D. McKnight, Environ. Sci. Technol. 30, 12 (1996).Google Scholar
  15. 15.
    R. W. Winner, Aquatic Toxicol. 5, 267 (1984).Google Scholar
  16. 16.
    R. C. Playle and D. G. Dixon, Can. J. Fish. Aquat. Sci. 50, 2678 (1993).Google Scholar
  17. 17.
    D. B. Buchwalter, G. Linder, and L. R. Curtis, Environ. Toxicol. Chem. 15, 4 (1996).Google Scholar
  18. 18.
    N. E. Good, G. D. Winget, W. Winter, T. N. Connolly, S. Izawa, and R. M. M. Singh, Biochemistry 5, 267 (1966).Google Scholar
  19. 19.
    F. M. M. Morel and J. G. Hering, Principles and Applications of Aquatic Chemistry (Wiley, New York, 1993).Google Scholar
  20. 20.
    C. F. Baes, Jr. and R. E. Mesmer, The Hydrolysis of Cations (Wiley, New York, 1976).Google Scholar
  21. 21.
    A. L. Herbelin and J. C. Westall, FITEQL: A Computer Program for Determination of Chemical Equilibrium Constants from Experimental Data, Version 3.1, Report 94-01 (Oregon State University, Department of Chemistry, Corvallis, OR, 1994).Google Scholar

Copyright information

© Plenum Publishing Corporation 1998

Authors and Affiliations

  • Daniel E. Giammar
    • 1
  • David A. Dzombak
    • 2
  1. 1.Environmental Engineering ScienceCalifornia Institute of TechnologyPasadena
  2. 2.Department of Civil and Environmental EngineeringCarnegie Mellon UniversityPittsburgh

Personalised recommendations