D. Angluin, (1978). Inductive inference of formal languages from positive data.

*Information and Control*, 45:117–135.

Google ScholarM. Bain, (1992). Experiments in non-monotonic first-order induction. In S. Muggleton, editor, *Inductive Logic Programming*, pages 423–435. Academic Press.

R. C. Berwick, (1986). Learning from positive-only examples. In R. Michalski, J. Carbonell, and T. Mitchell, editors, *Machine Learning: An Artificial Intelligence Approach*, volume II, pages 625–645. Morgan Kaufmann.

W. Buntine, (1988). Generalized subsumption and its application to induction and redundancy.

*Artificial Intelligence*, 36:149–176.

Google ScholarG. J. Chaitin, (1987).

*Information, Randomness & Incompleteness*. World Scientific, Singapore.

Google ScholarP. Cheeseman, (1990). On finding the most probable model. In J. Shrager and P. Langley, editors, *Computational models of scientific discovery and theory formation*, chapter 3. Morgan Kaufmann.

J. Feldman, (1972). Some decidability results on grammatical inference and complexity.

*Information and Control*, 20:244–262.

Google ScholarB. R. Gaines, (1976). Behavior/structure transformations under uncertainty.

*Int. J. Man-Machine Studies*, 8:337–365.

Google ScholarE. M. Gold, (1967). Language identification in the limit.

*Information and Control*, 10:447–474.

Google ScholarM. Li and P. Vitanyi, (1992). Inductive reasoning and Kolmogorov complexity.

*J. Computer and System Sciences*, 44 (2):343–384.

Google ScholarJ. W. Lloyd, (1987). *Foundations of logic programming*. Springer-Verlag.

S. Minton, (1990). Quantitative results concerning the utility of explanation-based learning.

*Artificial Intelligence*, 42:363–392.

Google ScholarT. M. Mitchell, (1982). Generalization as search.

*Artificial Intelligence*, 18:203–226.

Google ScholarS. Muggleton, (1988). A strategy for constructing new predicates in first order logic. In *Proc EWSL 88*, pages 123–130.

S. Muggleton, (1992). Inductive logic programming. In S. Muggleton, editor, *Inductive Logic Programming*, pages 3–27. Academic Press.

S. Muggleton, editor, (1992). *Inductive Logic Programming*. Academic Press.

S. Muggleton, A. Srinivasan, and M. Bain, (1992). Compression, significance and accuracy. In D. Sleeman and P. Edwards, editors, *Machine Learning: Proceedings of the Ninth International Conference (ML92)*, pages 338–347. Morgan Kaufmann.

K. R. Popper, (1959). *The Logic of Scientific Discovery*. Hutchinson & Co. Ltd.

J. R. Quinlan, (1986). Induction of decision trees.

*Machine Learning*, 1:81–106.

Google ScholarJ. R. Quinlan, (1990). Learning logical definitions from relations.

*Machine Learning*, 5 (3):239–266.

Google ScholarJ. Rissanen, (1985). Minimum description length principle. In S. Kotz and N. L. Johnson, editors, *Encyclopedia of Statistical Sciences*, pages 523–527. Wiley.

C. Rouveirol, (1994). Flattening and saturation: two representation changes for generalization.

*Machine Learning* 14 (2):219–232.

Google ScholarC. Sammut and R. B. Banerji, (1986). Learning concepts by asking questions. In R. Michalski, J. Carbonell, and T. Mitchell, editors, *Machine Learning: An Artificial Intelligence Approach*, volume II, pages 167–191. Morgan Kaufmann.

E. Y. Shapiro, (1983). *Algorithmic program debugging*. The MIT Press.

R. J. Solomonoff, (1978). Complexity-based induction systems: Comparisons and convergence theorems.

*IEEE Trans. Information Theory*, IT-24 (4):422–432.

Google ScholarL. Sterling and E. Shapiro, (1986). *The Art of Prolog*. The MIT Press.

C. S. Wetherell, (1980). Probabilistic languages: A review and some open questions.

*ACM Computing Surveys*, 12 (4):361–379.

Google ScholarP. H. Winston, (1975). Learning structural descriptions from examples. In P. H. Winston, editor, *The Psychology of Computer Vision*. McGraw-Hill.

I. H. Witten, R. Neal, and J. G. Cleary, (1987). Arithmetic coding for data compression.

*Communications of the ACM*, 30 (6):520–540.

Google Scholar