A Remark on Two Constructions of Exponential Attractors for α-Contractions

  • A. Eden
  • C. Foias
  • V. Kalantarov
Article

Abstract

An improvement in the original constructions of exponential attractors is indicated. Namely, when the solution semigroup is α-contractive and satisfies the discrete squeezing property, then even when the invariant set on which the semigroup acts is not compact, the original constructions carries through. We obtain the same conclusion for the construction with Lyapunov dimension for α-constructions.

α-Contractions attractors Lyapunov dimension 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    Babin, A. V., and Nicolaenko, B. (1995). Exponential attractors for reaction diffusion equations in unbounded domains. J. Dynam. Diff. Eq. 7, 567–590.Google Scholar
  2. 2.
    Babin, A. V., and Vishik, M. I. (1989). Attractors for Evolution Equations, Nauka, Moscow (in Russian).Google Scholar
  3. 3.
    Eden, A. (1990). Local estimates for the Hausdorf dimension of an attractor. J. Math. Anal. Appl. 150(1), 100–119.Google Scholar
  4. 4.
    Eden, A., and Kalantarov, V. (1996). Finite dimensional attractors for a class of semilinear wave equations. Turk. J. Math. 20(3), 425–450.Google Scholar
  5. 5.
    Eden, A., and Milani, A. J. (1993). Exponential attractors for extensible beam equations. Nonlinearity 6, 457–479.Google Scholar
  6. 6.
    Eden, A., and Rakotoson, J. M. (1994). Exponential attractors for a doubly nonlinear equation. J. Math. Anal. Appl. 185(2), 321–339.Google Scholar
  7. 7.
    Eden, A., Foias, C., Nicolaenko, B., and Temam, R. (1990). Ensembles inertiels pour des equations d'evolution dissipatives. C.R. Acad. Si. Paris Ser. I 310, 559–562.Google Scholar
  8. 8.
    Eden, A., Milani, A. J., and Nicolaenko, B. (1992). Exponential attractors for semilinear wave equations with damping. J. Math. Anal. Appl. 169, 408–419.Google Scholar
  9. 9.
    Eden, A., Foias, C., and Nicolaenko, B. (1993a). Exponential attractors of optimal Lyapunov dimension for Navier-Stokes equations. C.R. Acad. Sci. Paris Ser. I 316, 1211–1215.Google Scholar
  10. 10.
    Eden, A., Milani, A. J., and Nicolaenko, B. (1993b). Local exponential attractors for models of phase change for compressible gas dynamics. Nonlinearity 6, 93–117.Google Scholar
  11. 11.
    Eden, A., Foias, C., Nicolaenko, B., and Temam, R. (1994a). Exponential Attractors for Dissipative Evolution Equations, Masson, Paris.Google Scholar
  12. 12.
    Eden, A., Foias, C., and Nicolaenko, B. (1994b). Exponential attractors of optimal Lyapunov dimension for Navier-Stokes equations. J. Dynam. Diff. Eq. 6, 301–323.Google Scholar
  13. 13.
    Hale, J. K. (1988). Asymptotic Behaviour of Dissipative Systems, AMS Math. Surv. Monogr. No. 25, Providence, RI.Google Scholar
  14. 14.
    Kuratowski, C. (1966). Topology, Academic Press, New York.Google Scholar
  15. 15.
    Ladyzhenskaya, O. L. (1982). On the finiteness of the dimension of bounded invariant sets for the Navier-Stokes equations and some other dissipative systems. Zapiski Nauchnich Semin. LOMI 115, 137–155.Google Scholar
  16. 16.
    Temam, R. (1988). Infinite Dimensional Dynamical Systems in Mechanics and Physics, Springer-Verlag, New York.Google Scholar

Copyright information

© Plenum Publishing Corporation 1998

Authors and Affiliations

  • A. Eden
    • 1
  • C. Foias
    • 2
  • V. Kalantarov
    • 3
  1. 1.Mathematics Department, BebekBoğaziçi UniversityIstanbulTurkey
  2. 2.Mathematics DepartmentIndiana UniversityBloomington
  3. 3.Mathematics Department, BeytepeHacettepe UniversityAnkaraTurkey

Personalised recommendations