Advertisement

Journal of Optimization Theory and Applications

, Volume 95, Issue 1, pp 101–126 | Cite as

Use of Augmented Lagrangian Methods for the Optimal Control of Obstacle Problems

  • M. Bergounioux
Article

Abstract

We investigate optimal control problems governed by variational inequalities involving constraints on the control, and more precisely the example of the obstacle problem. In this paper, we discuss some augmented Lagrangian algorithms to compute the solution.

Optimal control Lagrange multipliers augmented Lagrangians variational inequalities 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    BARBU, V., Optimal Control of Variational Inequalities, Research Notes in Mathematics, Pitman, Boston, Massachusetts, Vol. 100, 1984.Google Scholar
  2. 2.
    MIGNOT, F., and PUEL, J. P., Optimal Control in Some Variational Inequalities, SIAM Journal on Control and Optimization, Vol. 22, pp. 466–476, 1984.Google Scholar
  3. 3.
    HE, Z. X., State Constrained Control Problems Governed by Variational Inequalities, SIAM Journal on Control and Optimization, Vol. 25, pp. 1119–1144, 1987.Google Scholar
  4. 4.
    BERGOUNIOUX, M., Optimality Conditions for Optimal Control of the Obstacle Problem Preprint 95–01, Université d'Orléans, 1995.Google Scholar
  5. 5.
    BERGOUNIOUX, M., Optimality Conditions for Optimal Control of Elliptic Problems Governed by Variational Inequalities: A Mathematical Programming Approach, Proceedings of the IFIP Conference on System Modelling and Optimization of Distributed Parameters with Applications to Engineering, Chapman and Hall, London, England, pp. 123–131, 1996.Google Scholar
  6. 6.
    BERGOUNIOUX, M., Optimal Control of Problems Governed by Abstract Variational Inequalities with State Constraints, Preprint 96–15, Université d'Orleans, Orléans, France, 1996.Google Scholar
  7. 7.
    FORTIN, M., and GLOWINSKI, R., Méthodes du Lagrangien Augmenté: Applications à la Résolution Numérique de Problèmes aux Limites, Méthodes Mathématiques de l'Informatique, Dunod, Paris, France, Vol. 9, 1982.Google Scholar
  8. 8.
    FRIEDMAN, A., Variational Principles and Free-Boundary Problems, Wiley, New York, New York, 1982.Google Scholar
  9. 9.
    BERGOUNIOUX, M., and TIBA, D., General Optimality Conditions for Constrained Convex Control Problems, SIAM Journal on Control, Vol. 34, pp. 698–711, 1995.Google Scholar
  10. 10.
    BERGOUNIOUX, M., An Augmented Lagrangian Algorithm for Distributed Optimal Control Problems with State Constraints, Journal of Optimization Theory and Applications, Vol. 78, pp. 493–521, 1993.Google Scholar
  11. 11.
    BERGOUNIOUX, M., and KUNISCH, K., Augmented Lagrangian Techniques for Elliptic State Constrained Optimal Control Problems, SIAM Journal of Control and Optimization, Vol. 35,No. 5, 1997.Google Scholar
  12. 12.
    GLOWINSKI, R., and LE TALLEC, P., Augmented Lagrangian and Operator-Splitting Methods in Nonlinear Mechanics, SIAM Studies in Applied Mathematics, Philadelphia, Pennsylvania, 1989.Google Scholar
  13. 13.
    ITO, K., and KUNISCH, K., The Augmented Lagrangian Method for Equality and Inequality Constraints in Hilbert Spaces, Mathematical Programming, Vol. 46, pp. 341–360, 1990.Google Scholar
  14. 14.
    MALANOWSKI, K., Regularity of Solutions in Stability Analysis of Optimization and Optimal Control Problems, Control and Cybernetics, Vol. 23, pp. 61–68, 1994.Google Scholar
  15. 15.
    ITO, K., and KUNISCH, K., Augmented Lagrangian Methods for Nonsmooth Convex Optimization in Hilbert Spaces, Preprint, Berlin, Germany, 1994.Google Scholar
  16. 16.
    BERMUDEZ, A., and SAGUEZ, C., Optimal Control of Variational Inequalities: Optimality Conditions and Numerical Methods, Free Boundary Problems: Applications and Theory, Research Notes in Mathematics, Pitman, Boston, Massachusetts, Vol. 121, pp. 478–487, 1988.Google Scholar

Copyright information

© Plenum Publishing Corporation 1997

Authors and Affiliations

  • M. Bergounioux
    • 1
  1. 1.Maitre de Conférences, URA-CNRS 1803, UFR SciencesUniversité d'OrléansOrléansFrance

Personalised recommendations