Science & Education

, Volume 12, Issue 1, pp 45–73 | Cite as

Newton's First Law: Text, Translations, Interpretations and Physics Education

  • Igal Galili
  • Michael Tseitlin


The translation from Latin of Newton's First Law (NFL) was considered in a historical perspective. The study showed that Newton's original yields two versions of complementary meanings, one temporal and the other quantitative. The latter is especially important in presenting the idea of inertia of massive bodies, and a new paradigm of understanding motion. The presentation of NFL in physics textbooks was reviewed and a decline in the status of NFL in the physics curriculum was noted. As a rule, if quoted at all, NFL is presented in its temporal form, while the quantitative form does not appear. Normally, NFL is interpreted as a special case: a trivial deduction from Newton's Second Law. Some advanced textbooks replace NFL by a modernized claim, which abandons its original meaning. We advocate the importance and nontrivial meaning of NFL, and call for its `rehabilitation' in physics instruction within the discourse mode of education.


Physic Instruction Historical Perspective Temporal Form Original Meaning Quantitative Form 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. AAAS ¶ American Association for the Advancement of Science: 1990, Science for All Americans, Project 2021, Oxford University Press, NY, p. 53.Google Scholar
  2. Ames, J.S. & Murngham, F.D.: 1958/1937, Theoretical Mechanics. An Introduction to Mathematical Physics, Dover, NY, p. 104.Google Scholar
  3. Arons, A.B.: 1990, A Guide to Introductory Physics Teaching, Wiley, NY, p. 52.Google Scholar
  4. Ball, W.W.R.: 1972/1893, An Essay on Newton's Principia, Johnson, NY.Google Scholar
  5. Bruner, M.: 1960, The Process of Education, Vintage Books, NY, pp. 52–54.Google Scholar
  6. Chaikin, S.E.: 1963, The Physical Basis of Mechanics, Gosudarstvenoe Izdatelstvo Fisiko-Matematicheskoi Literaturi, Moscow.Google Scholar
  7. Clagett, M.: 1959, The Science of Mechanics in the Middle Ages, University of Wisconsin Press, Madison, pp. 421–433.Google Scholar
  8. Cohen, B.: 1971, Introduction to Newton’s ‘Principia’ University Press, Cambridge, pp. XVI, 28.Google Scholar
  9. Cohen, B.: 1999, ‘Introduction to Newton's 'Principia’,in I. Newton, Mathematical Principles of Natural Philosophy, University of California Press, Berkeley, California, p. 110.Google Scholar
  10. Cooley, L.R.C.: 1881, Natural Philosophy for Common and High Schools, Charles Scribner's Sons, NY, p. 58.Google Scholar
  11. Des-Cartes, Renati: 1656, Principia Philosophiae, Apud Johannem Jansonium Juniorem, Amstelodami.Google Scholar
  12. Descartes, R.: 1984/1647, Principles of Philosophy, Reidel, Dordrecht, Part II.Google Scholar
  13. Dijksterhuis, E.J.: 1986, The Mechanization of the World Picture, Princeston University Press, Princeston, NJ, p. 29.Google Scholar
  14. Drake, S.: 1978, Galileo at Work. His Scientific Biography, Dover, NY, p. 294.Google Scholar
  15. Duhem, P.: 1991/1905, The Aim and Structure of Physical Theory, Princeston University Press, Princeston, NJ.Google Scholar
  16. Einstein, A. & Infeld, L.: 1938, The Evolution of Physics, University Press, Cambridge, p. 9.Google Scholar
  17. Encyclopedie Scientifique: 1930, De Mecanique Appliquee, Guston Doin, Paris, p. 18.Google Scholar
  18. Frank, P.: 1957, Philosophy of Science, Prentice Hall, Englewood Cliffs, NJ., pp. 104–107.Google Scholar
  19. Galiley, G.: 1612/1995, ‘Second Letter on Sunspots’, in S. Drake, Galileo at Work, Dover, NY, p. 186.Google Scholar
  20. Galiley, G.: 1632/1953, Dialogue Concerning the Two Chief World Systems, University of California Press, Berkeley, CA.Google Scholar
  21. Garber D.: 1992, Descartes' Metaphysical Physics, University of Chicago Press, Chicago, pp. 211–230.Google Scholar
  22. Giancoli, D.C.: 1988, Physics for Scientists and Engineers, Prentice Hall, Englewood Cliffs, NJ., pp. 69–72.Google Scholar
  23. Hartog, J.P.: 1961/1948, Mechanics, Dover, NY, p. 175.Google Scholar
  24. Hecht, E.: 1996, Physics, Brooks & Cole, Pacific Grove, CA, p. 117.Google Scholar
  25. Hertz, H.: 1956/1900, The Principles of Mechanics (presented in a new form), Dover, NY, p. 144.Google Scholar
  26. Hewitt, P.: 1998, Conceptual Physics, Addison-Wesley, Reading, MA, p. 59.Google Scholar
  27. Jammer, M.: 1957, Concepts of Force, Harper, NY, pp. 56, 81-92.Google Scholar
  28. Jammer, M.: 1961, Concepts of Mass, Harper, NY.Google Scholar
  29. Jeans, J.H.: 1907, An Elementary Treatise on Theoretical Mechanics, Ginn & Co., Boston, p. 26.Google Scholar
  30. Jeans, J.H.: 1947, The Growth of Physical Science, The University Press, Cambridge, p. 191.Google Scholar
  31. Kittel, C., Knight, W.D. & Ruderman, M.D.: 1973, Mechanics, Berkeley Physics Course, McGraw Hill, NY, p. 58.Google Scholar
  32. Koyré, A.: 1968, Newtonian Studies, The University of Chicago Press, Chicago, p. 66.Google Scholar
  33. Landau, L.D., Ahieser, A.I. & Lifshits, E.M.: 1969, Course in General Physics, Nauka, Moscow, p. 10.Google Scholar
  34. Lemon, H. & Ference, M.: 1943, Analytical Experimental Physics, The University of Chicago Press, Chicago, p. 33.Google Scholar
  35. Mach, E.: 1960/1893, The Science of Mechanics: A Critical and Historical Account of its Development, Open Court, La Salle, p. 301.Google Scholar
  36. Maxwell, J.C.: 1956, Mater and Motion, Dover, NY, p. 28.Google Scholar
  37. Millikan, R.A., Roller, D. & Watson, E.C.: 1965/1937, Mechanics, Molecular Physics, Heat and Sound, The MIT Press, Cambridge, MA, p. 35.Google Scholar
  38. Newtono Isaaco: 1687, Philosophiae Naturalis Principia Methematica, Dawson & Sons, London, 1st ed., p. 12.Google Scholar
  39. Newtono Isaaco: 1713/1723, Philosophiae Naturalis Principia Methematica, Sumptibus Societatis, Amstaelodami, 2nd ed., p. 12.Google Scholar
  40. Newtono Isaaco: 1726/1779, Philosophiae Naturalis Principia Methematica, Dawson & Sons, London, 3d ed., p. 13.Google Scholar
  41. Newton, I.: 1729/1964, Mathematical Principles of Natural Philosophy, Benjamin Motte, Middle-Temple-Gate in Fleetstreet, London, translated by A. Motte; or Runes, D.D. & Kiernan, T. (eds.), The Science Classic Library, Philosophical Library, NY, p. 23.Google Scholar
  42. Newton, I.: 1759, Principles Mathematiques de la Philosophie Naturelle, Desaint & Saillant, Paris, Par feue Madame la Marquise du Chastellet.Google Scholar
  43. Newton, I.: 1776/1969, Mathematical Principles of Natural Philosophy, Dawson of Pall Mall, London, translated by R. Thorp, p. 22.Google Scholar
  44. Newton, I.: 1872, Mathematische Principien der Naturlehre, Verlag von Robert Oppenheim, Berlin, Herausgegeben von Prof. Dr. J. Ph. Wolfers, p. 32.Google Scholar
  45. Newton, I.: 1934, Mathematical Principles of Natural Philosophy, University of California Press, Berkeley, CA, revised edition of Motte's translation by F. Cajori, p. 13.Google Scholar
  46. Newton, I.: 1936/1989, Mathematical Principles of Natural Philosophy, Nauka, Moscow, translated into Russian by A.N. Krilov.Google Scholar
  47. Newton, I.: 1978, Mathematical Principles of Natural Philosophy, Britannica Great Books, Chicago, p. 270.Google Scholar
  48. Newton, I.: 1999, Mathematical Principles of Natural Philosophy, University of California Press, Berkeley, CA, new translation by B. Cohen & A. Whitman.Google Scholar
  49. Osgood, W.F.: 1937, Mechanics, Macmillan, NY, p. 50.Google Scholar
  50. Painlevé, P.: 1895, ‘Leçons sur l'Integration des Equations differentielles de la Mechanique et Applications’, Hermann, Paris.Google Scholar
  51. Peierls, R.E.: 1956, The Laws of Nature, Charles Scribner's Sons, NY, p. 20.Google Scholar
  52. Pippard, A.B.: 1972, Forces and Particles, Wiley, NY, p. 20.Google Scholar
  53. Platrier, C.: 1954, Mechanique rationnelle, Dunod, Paris.Google Scholar
  54. Polak, L.S.: 1989, ‘Introduction’, in Newton, I., Mathematical Principles of Natural Philosophy, Nauka, Moscow, pp. 11–12.Google Scholar
  55. Pomeroy, J.H.: 1989, Science, Holt, Rinehart and Winston, NY, p. 150.Google Scholar
  56. Reichert, J.F.: 1991, A Modern Introduction to Mechanics, Prentice Hall, Engelwood Cliffs, NJ, p. 185.Google Scholar
  57. Reif, F.: 1995, Understanding Basic Mechanics, Wiley, NY, p. 95.Google Scholar
  58. Resnick, R., Halliday, D. & Krane, K.: 1992, Physics, Wiley, NY, Vol. 1, p. 79.Google Scholar
  59. Russell, B.: 1959, Wisdom of the West, Crescent Books, London, p. 190.Google Scholar
  60. Saveliev, I.V.: 1998, Course in General Physics, Nauka, Moscow, p. 55.Google Scholar
  61. Stinner, A.: 1994, ‘The Story of Force: From Aristotle to Einstein’, Physics Education 29(2), 77–86.Google Scholar
  62. Taylor, L.W.: 1959/1941, Physics, Dover, NY, pp. 130–131.Google Scholar
  63. Touger, J.: 1991, ‘When words fail us’, The Physics Teacher 29(2), 90–95.Google Scholar
  64. Viennot, L.: 1979, ‘Spontaneous Reasoning in Elementary Dynamics’, European Journal of Science Education 1(2), 205–221.Google Scholar
  65. Vigotsky, L.: 1986, Thought and Language, MIT Press, Cambridge, MA.Google Scholar
  66. Westfall, R.S.: 1971, Force in Newton's Physics, Macdonald, London.Google Scholar
  67. Westfall, R.S.: 1977, The Construction of Modern Science, Cambridge University Press, Cambridge, p. 144.Google Scholar
  68. White, J.T. & Oxon, D.D.: 1948, The White Latin Dictionary, Follet Publishing Company, Chicago.Google Scholar
  69. Whitrow, G.: 1971, ‘The Laws of Motion’, The British Journal for the History of Science 5(19), 217–234.Google Scholar
  70. Whitside, D.T. (ed.): 1978, The Mathematical Papers of Isaac Newton, University Press, Cambridge, Vol. 6, p. 33.Google Scholar
  71. Whitside, D.T. (ed.): 1967-1981, The Mathematical Papers of Isaac Newton, University Press, Cambridge, 8 vols.Google Scholar
  72. Wolf, A.: 1952, A History of Science, Technology and Philosophy in the 18th Century, Harper, NY, Vol. 1.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • Igal Galili
    • 1
  • Michael Tseitlin
    • 1
  1. 1.Science Teaching Department, the Faculty of Mathematics and Natural ScienceThe Hebrew University of JerusalemJerusalemIsrael

Personalised recommendations