Advertisement

Journal of Optimization Theory and Applications

, Volume 95, Issue 2, pp 295–304 | Cite as

A Method for Establishing Optimality Conditions for a Nonsmooth Vector-Valued Minimax Problem

  • B. D. Craven
  • D. V. Luu
Article
  • 59 Downloads

Abstract

Using a method of uniform approximations, necessary and sufficient conditions for a nonsmooth constrained vector-valued minimax problem are established in terms of Mordukhovich subdifferentials.

Uniform approximations nonsmooth vector-valued minimax problem Mordukhovich subdifferential invex functions 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    BECTOR, C. R., CHANDRA, S., and HUSAIN, I., Sufficient Optimality Conditions and Duality for a Continuous-Time Minimax Programming Problem, Asia-Pacific Journal of Operational Research, Vol. 9, pp. 55–76, 1982.Google Scholar
  2. 2.
    CRAVEN, B. D., Lagrangian Conditions for a Minimax, Proceedings of the Workshop/Miniconference on Functional Analysis/Optimization, Edited by S. P. Fitzpatrick and J. K. Giles, Australian National University, Canberra, Australia, pp. 24–33, 1988.Google Scholar
  3. 3.
    CRAVEN, B. D., On Continuous Programming with Generalized Convexity, Asia-Pacific Journal of Operational Research, Vol. 10, pp. 219–231, 1993.Google Scholar
  4. 4.
    CRAVEN, B. D., and LUU, D. V., An Approach to Optimality Conditions for Nonsmooth Minimax Problems, Preprint 8, Mathematics Department, University of Melbourne, Melbourne, Australia, 1993.Google Scholar
  5. 5.
    LUU, D. V., and OETTLI, W., Higher-Order Optimality Conditions for a Minimax, Preprint 143, Fakultät für Mathematik und Informatik, Universität Mannheim, 1992.Google Scholar
  6. 6.
    CRAVEN, B. D., Nondifferentiable Optimization by Smooth Approximation, Optimization, Vol. 17, pp. 3–17, 1986.Google Scholar
  7. 7.
    CRAVEN, B. D., and LUU, D. V., Lagrangian Conditions for a Nonsmooth Vector-Valued Minimax, Preprint 21, Mathematics Department, University of Melbourne, Melbourne, Australia, 1993.Google Scholar
  8. 8.
    MORDUKHOVICH, B., Stability Theory for Parametric Generalized Equations and Variational Inequalities in Nonsmooth Analysis, Preprint 997, Institute for Mathematics and Applications, 1992.Google Scholar
  9. 9.
    MORDUKHOVICH, B., Approximation Methods in Problems of Approximation and Control, Nauka, Moscow, Russia, 1988 (in Russian).Google Scholar
  10. 10.
    MORDUKHOVICH, B., Complete Characterization of Openness, Metric Regularity, and Lipschitzian Properties of Multifunctions, Transactions of the American Mathematical Society, Vol. 340, pp. 1–35, 1993.Google Scholar
  11. 11.
    CRAVEN, B. D., Control and Optimization, Chapman and Hall, London, England, 1995.Google Scholar
  12. 12.
    CRAVEN, B. D., and LUU, D. V., Constrained Minimax for a Vector-Valued Function, Optimization, Vol. 31, pp. 199–208, 1994.Google Scholar
  13. 13.
    SIMMONS, G. F., Introduction to Topology and Modern Analysis, McGraw-Hill, New York, New York, 1963.Google Scholar

Copyright information

© Plenum Publishing Corporation 1997

Authors and Affiliations

  • B. D. Craven
    • 1
  • D. V. Luu
    • 2
  1. 1.Mathematics DepartmentUniversity of MelbourneMelbourneAustralia
  2. 2.Institute of MathematicsHanoiVietnam;

Personalised recommendations