International Journal of Thermophysics

, Volume 20, Issue 3, pp 825–835 | Cite as

A Generalized Model for the Thermodynamic Properties of Mixtures

  • E. W. Lemmon
  • R. T Jacobsen
Article

Abstract

A mixture model explicit in Helmholtz energy has been developed which is capable of predicting thermodynamic properties of mixtures containing nitrogen, argon, oxygen, carbon dioxide, methane, ethane, propane, n-butane, i-butane, R-32, R-125, R-134a, and R-152a within the estimated accuracy of available experimental data. The Helmholtz energy of the mixture is the sum of the ideal gas contribution, the compressibility (or real gas) contribution, and the contribution from mixing. The contribution from mixing is given by a single generalized equation which is applied to all mixtures studied in this work. The independent variables are the density, temperature, and composition. The model may be used to calculate the thermodynamic properties of mixtures at various compositions including dew and bubble point properties and critical points. It incorporates accurate published equations of state for each pure fluid. The estimated accuracy of calculated properties is ±0.2% in density, ±0.1 % in the speed of sound at pressures below 10 MPa, ±0.5% in the speed of sound for pressures above 10 MPa, and ±1% in heat capacities. In the region from 250 to 350 K at pressures up to 30 MPa, calculated densities are within ±0.1 % for most gaseous phase mixtures. For binary mixtures where the critical point temperatures of the pure fluid constituents are within 100 K of each other, calculated bubble point pressures are generally accurate to within ±1 to 2%. For mixtures with critical points further apart, calculated bubble point pressures are generally accurate to within ±5 to 10%.

cryogens equation of state hydrocarbons mixtures refrigerants thermodynamic properties 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    E. W. Lemmon, A Generalized Model for the Prediction of the Thermodynamic Properties of Mixtures Including Vapor-Liquid Equilibrium, Ph.D. dissertation (University of Idaho, Moscow, 1996).Google Scholar
  2. 2.
    T. W. Leland and P. S. Chappelear, Ind. Eng. Chem. 60:39 (1968).Google Scholar
  3. 3.
    R. Tillner-Roth, Proc. Int. Semin. Heat Trans. (JAR, 1993), p. 146.Google Scholar
  4. 4.
    E. W. Lemmon and R. T Jacobsen, Adv. Cryo. Eng. 43:1281 (1998).Google Scholar
  5. 5.
    E. W. Lemmon and R. T Jacobsen, Int. J. Thermophys. (in press).Google Scholar
  6. 6.
    U. Setzmann and W. Wagner, J. Phys. Chem. Ref. Data 20:1061 (1991).Google Scholar
  7. 7.
    D. G. Friend, H. Ingham, and J. F. Ely, J. Phys. Chem. Ref. Data 20:275 (1991).Google Scholar
  8. 8.
    B. A. Younglove and J. F. Ely, J. Phys. Chem. Ref. Data 16:577 (1987).Google Scholar
  9. 9.
    M. Jahangiri, R. T Jacobsen, R. B. Stewart, and R. D. McCarty, J. Phys. Chem. Ref. Data 15:593 (1986).Google Scholar
  10. 10.
    R. Span, E. W. Lemmon, R. T Jacobsen, and W. Wagner, Int. J. Thermophys. 14:1121 (1998).Google Scholar
  11. 11.
    R. B. Stewart and R. T Jacobsen, J. Phys. Chem. Ref. Data 18:639 (1989).Google Scholar
  12. 12.
    R. Schmidt and W. Wagner, Fluid Phase Equil. 19:175 (1985).Google Scholar
  13. 13.
    R. Span and W. Wagner, J. Phys. Chem. Ref. Data 25:1509 (1996).Google Scholar
  14. 14.
    E. W. Lemmon, R. T Jacobsen, S. G. Penoncello, and S. W. Beyerlein, Adv. Cryo. Eng. 39:1891 (1994).Google Scholar
  15. 15.
    M. Jaeschke and A. E. Humphreys, The GERG Databank of High Accuracy Compressibility Factor Measurements, GERG Technical Monograph 4 (1990).Google Scholar
  16. 16.
    W. M. Haynes, R. D. McCarty, B. E. Eaton, and J. C. Holste, J. Chem. Thermodyn. 17:209 (1985).Google Scholar
  17. 17.
    M. J. Hiza, W. M. Haynes, and W. R. Parrish, J. Chem. Thermodyn. 9:873 (1977).Google Scholar
  18. 18.
    A. E. Hoover, Virial Coefficients of Methane and Ethane, Ph.D. dissertation (Rice University, Houston, TX, 1965).Google Scholar
  19. 19.
    J. B. Rodosevich and R. C. Miller, AIChE J. 19:729 (1973).Google Scholar
  20. 20.
    J. E. Mayrath and J. W. Magee, J. Chem. Thermodyn. 21:499 (1989).Google Scholar
  21. 21.
    S. J. Boyes, The Speed of Sound in Gases with Application to Equations of State and Sonic Nozzles, Ph.D. dissertation (University of London, London, 1992).Google Scholar
  22. 22.
    B. A. Younglove, N. V. Frederick, and R. D. McCarty, NIST Monograph 178 (Natl. Inst. Stand. Tech., Boulder, CO, 1993).Google Scholar
  23. 23.
    O. T. Bloomer, D. C. Gami, and J. D. Parent, Inst. Gas Technol. Res. Bull., No. 22 (1953).Google Scholar
  24. 24.
    R. T. Ellington, B. E. Eakin, J. D. Parent, D. C. Gami, and O. T. Bloomer, Thermodyn. Transp. Prop. Gases Liq. Solids (McGraw-Hill, New York, 1959), p. 180.Google Scholar
  25. 25.
    R. C. Miller, A. J. Kidnay, and M. J. Hiza, J. Chem. Thermodyn. 9:167 (1977).Google Scholar
  26. 26.
    I. Wichterle and R. Kobayashi, J. Chem. Eng. Data 17:9 (1972).Google Scholar
  27. 27.
    J. F. Ely, J. W. Magee, and W. M. Haynes, Thermophysical Properties for Special High CO 2 Content Mixtures, GPA Research Report RR-110 (Gas Processors Association, Tulsa, OK, 1987).Google Scholar
  28. 28.
    R. T. Jacobsen, R. B. Stewart, and M. Jahangiri, J. Phys. Chem. Ref. Data 15:735 (1986).Google Scholar

Copyright information

© Plenum Publishing Corporation 1999

Authors and Affiliations

  • E. W. Lemmon
    • 1
  • R. T Jacobsen
    • 1
  1. 1.Center for Applied Thermodynamic StudiesUniversity of Idaho, Moscow, Idaho 83844-1011, U.S.A. Physical and Chemical Properties Division, National Institute of Standards and TechnologyBoulderU.S.A

Personalised recommendations