Lithographic Dipole Antenna Properties at 10 μm Wavelength: Comparison of Method-of-Moments Predictions with Experiment

  • E. N. Grossman
  • J. A. Koch
  • C. D. Reintsema
  • A. Green
Article

Abstract

Dipole antennas designed for operation at 10 μm wavelength have been fabricated by optical lithography and their properties measured by detection of CO2 laser radiation in integrated thin-film bolometers. We find a remarkably strong increase in cross-polarized signal as the antenna linewidth is increased. The measured beam pattern is a saddle point at broadside (local minimum in the H-plane, local maximum in the E-plane) as predicted by standard method-of-moments theory.

dipole method-of-moments lithographic antenna 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D.B. Rutledge, S.E. Schwarz, and A.T. Adams, “Infrared and Submillimeter Antennas,” Infrared Phys. 18, 713–729 (1978).Google Scholar
  2. 2.
    J.G. Small, G.M. Elchinger, A. Javan et al., “AC Electron Tunneling at Infrared Frequencies: Thin-film M-O-M Diode Structure with Broadband Characteristics,” Appl. Phys. Lett. 24(6), 275–279 (1974).Google Scholar
  3. 3.
    S.Y. Wang, T. Izawa, and T.K. Gustafson, “Coupling Characteristics of Thin-film Metal-Oxide-Metal Diodes at 10.6 μm,” Appl. Phys. Lett. 27(9), 481–483 (1975).Google Scholar
  4. 4.
    M. Kominami, Pozar, D.M., Schaubert, D.H., “Dipole and Slot Elements and Arrays on Semi-Infinite Substrate,” IEEE Trans. on Ant. and Prop. 33(6), 600–607 (1985).Google Scholar
  5. 5.
    E. Grossman, N.,, J. E. Sauvageau, and D. G. McDonald, “Lithographic Spiral Antennas at Short Wavelengths,” Appl. Phys. Lett. 59(25), 3225–3227 (1991).Google Scholar
  6. 6.
    N. Chong and H. Ahmed, “Antenna-coupled Polysilicon Air-bridge Thermal Detector for Mid-infrared Radiation,” Appl. Phys. Lett. 71(12), 1607–1609 (1997).Google Scholar
  7. 7.
    I. Wilke, W. Herrmann, and F.K. Kneubuhl, “Integrated Nanostrip Dipole Antennas for Coherent 30 THz Infrared Radiation,” Appl. Phys. B B58, 87–94 (1994).Google Scholar
  8. 8.
    M. E. MacDonald, Grossman, E. N., “Niobium Microbolometers for Far-infrared Detection,” IEEE Trans. on Microwave Theory and Techniques 43(4), 893–896 (1995).Google Scholar
  9. 9.
    I. Wilke, Opplinger, Y., Hermann, W., Kneubuhl, F.K., “Nanometer Thin-Film Ni-NiO-Ni Diodes for 30 THz Radiation,” Appl. Phys. A. A58, 329–341 (1994).Google Scholar
  10. 10.
    C Fumeaux, “Nanometer Thin-Film Ni-NiO-Ni Diodes for Detection and Mixing of 30 THz Radiation,” Ph. D., Inst. Quantum Electronics, ETH, 1997. Much higher cross-polarization has been reported in microwave, difference frequency mixing signals (C. Fumeaux, W. Hermann, F. K. Kneubuhl, H. Rothuizen, B. Lipphardt, C.O. Weiss, “Nanometer Thin-film Ni-NiO-Ni Diodes for Mixing 28 THz CO2-laser Emissions with Difference Frequencies up to 176 GHz”, Appl. Phys. B, 66, 1–6 (1998)). However, this presumably reflects the slower time constant of the cross-polarized signal, which is thermal in origin, rather than the intrinsic polarization of the antenna/substrate system.Google Scholar
  11. 11.
    G. M. Rebeiz, “Millimeter-Wave and Terahertz Integrated-Circuit Antennas,” Proc. of the IEEE 80(11), 1748–1760 (1992).Google Scholar
  12. 12.
    C.R. Brewitt-Taylor, D.J. Gunton, and H.D. Rees, “Planar Antennas on a Dielectric Surface,” Electronics Lett. 17(20), 729–731 (1981).Google Scholar

Copyright information

© Plenum Publishing Corporation 1998

Authors and Affiliations

  • E. N. Grossman
    • 1
  • J. A. Koch
    • 1
  • C. D. Reintsema
    • 1
  • A. Green
    • 2
  1. 1.National Institute of Standards and TechnologyBoulder
  2. 2.Scientific Applications International CorporationMaclean

Personalised recommendations