Journal of Solution Chemistry

, Volume 28, Issue 4, pp 247–264

Memorial Tribute Kenneth Sanborn Pitzer 1914–1997

Introduction

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Publications of Kenneth S. Pitzer

Journals and Book Chapters

  1. P. P. S. Saluja, K. S. Pitzer, and R. C. Phutela, “High-Temperature Thermodynamic Properties of Several 1:1 Electrolytes,” Can. J. Chem. 64, 1328–1335 (1986).Google Scholar
  2. J. M. H. Levelt Sengers, C. M. Everhart, G. Morrison, and K. S. Pitzer, “Thermodynamic Anomalies in Near-Critical Aqueous NaCl Solutions,” Chem. Eng. Commun. 47, 315–328 (1986).Google Scholar
  3. K. S. Pitzer, “Thermodynamic Properties of Ionic Fluids Over Wide Ranges of Temperature,” Pure Appl. Chem. 59, 1–6 (1987).Google Scholar
  4. R. C. Phutela, K. S. Pitzer, and P. P. S. Saluja, “Thermodynamics of Aqueous Magnesium Chloride, Calcium Chloride, and Strontium Chloride at Elevated Temperatures,” J. Chem. Eng. Data 32, 76–80 (1987).Google Scholar
  5. K. Balasubramanian and K. S. Pitzer, “Relativistic Quantum Chemistry,” in Ab Initio Methods in Quantum Chemistry, Vol. I, K. P. Lawley, ed. (Wiley Interscience, New York, 1987), pp. 287–319.Google Scholar
  6. R. P. Neisler and K. S. Pitzer, “The Dipositive Dimeric Ion Hg2 2+: A Theoretical Study,” J. Phys. Chem. 91, 1084–1087 (1987).Google Scholar
  7. K. S. Pitzer, J. L. Bischoff, and R. J. Rosenbauer, “Critical Behavior of Dilute NaCl in H2O,” Chem. Phys. Lett. 134, 60–63 (1987).Google Scholar
  8. K. S. Pitzer and D. R. Schreiber, “The Restricted Primitive Model for Ionic Fluids. Properties of the Vapor and the Critical Region,” Mol. Phys. 60, 1067–1078 (1987).Google Scholar
  9. R. T. Pabalan and K. S. Pitzer, “Thermodynamics of NaOH(aq) in Hydrothermal Solutions,” Geochim. Cosmochim. Acta 51, 829–837 (1987).Google Scholar
  10. D. R. Schreiber, M. C. P. de Lima, and K. S. Pitzer, “Electrical Conductivity, Viscosity, and Density of a Two-Component Ionic System at Its Critical Point,” J. Phys. Chem. 91, 4087–4091 (1987).Google Scholar
  11. R. T. Pabalan and K. S. Pitzer, “Thermodynamics of Concentrated Electrolyte Mixtures and the Prediction of Mineral Solubilities to High Temperatures for Mixtures in the System Na-K-Mg-Cl-SO4-OH-H2O,” Geochim. Cosmochim. Acta 51, 2429–2443 (1987).Google Scholar
  12. K. S. Pitzer, “A Thermodynamic Model for Aqueous Solutions of Liquid-Like Density,” in Reviews in Mineralogy, Vol. 17, Mineralogical Society of America, Chap. 4, I. S. E. Carmichael and H. P. Eugster, eds. (BookCrafters, Chelsea, MI, 1987).Google Scholar
  13. K. S. Pitzer, “Of Physical Chemistry and Other Activities,” Annu. Rev. Phys. Chem. 38, 1–25 (1987).Google Scholar
  14. K. S. Pitzer and D. R. Schreiber, “Improving Equation-of-State Accuracy in the Critical Region; Equations for Carbon Dioxide and Neopentane as Examples,” Fluid Phase Equil. 41, 1–17 (1988).Google Scholar
  15. R. T. Pabalan and K. S. Pitzer, “Apparent Molar Heat Capacity and Other Thermodynamic Properties of Aqueous KCl Solutions to High Temperatures and Pressures,” J. Chem. Eng. Data 33, 354–362 (1988).Google Scholar
  16. J.-Z. Yang and K. S. Pitzer, “Thermodynamics of Electrolyte Mixtures. Activity and Osmotic Coefficients Consistent with the Higher-Order Limiting Law for Symmetrical Mixing,” J. Solution Chem. 17, 909–924 (1988).Google Scholar
  17. K. S. Pitzer and J. C. Tanger IV, “Near-Critical NaCl-H2O: An Equation of State and Discussion of Anomalous Properties,” Int. J. Thermophys. 9, 635–648 (1988).Google Scholar
  18. D. R. Schreiber and K. S. Pitzer, “Selected Equation of State in the Acentric Factor System,” Int. J. Thermophys. 9, 965–974 (1988).Google Scholar
  19. R. T. Pabalan and K. S. Pitzer, “Heat Capacity and Other Thermodynamic Properties of Na2SO4(aq) in Hydrothermal Solutions and the Solubilities of Sodium Sulfate Minerals in the System Na-Cl-SO4-OH-H2O to 300°C” Geochim. Cosmochim. Acta 52, 2393–2404 (1988).Google Scholar
  20. R. R. Singh and K. S. Pitzer, “An Ionic System with Critical Point at 44°C, “J. Am. Chem. Soc. 110, 8723–8724 (1988).Google Scholar
  21. J.-Z. Yang and K. S. Pitzer, “Thermodynamics of Aqueous Uranyl Sulfate to 559 K,” J. Solution Chem. 18, 189–199 (1989).Google Scholar
  22. J. L. Bischoff and K. S. Pitzer, “Liquid-Vapor Relations for the System NaCl-H2O: Summary of the P-T-x Surface from 300° to 500°C,” Am. J. Sci. 289, 217–248 (1989).Google Scholar
  23. K. S. Pitzer, “Some Interesting Properties of Vapor-Liquid or Liquid-Liquid Coexistence Curves for Ionic and Non-Ionic Fluids,” Thermochim. Acta 139, 25–32 (1989).Google Scholar
  24. J.-Z. Yang and K. S. Pitzer, “The Application of the Ion-Interaction Model to Multicomponent 1–1 Type Electrolytes in Mixed Solvents,” J. Solution Chem. 18, 201–210 (1989).Google Scholar
  25. K. S. Pitzer, “Fluids, Both Ionic and Nonionic, Over Wide Ranges of Temperature and Composition,” Pure Appl. Chem. 61, 979–988 (1989); also J. Chem. Thermodyn. 21, 1–17 (1989). (This is the text of the 1988 Rossini lecture.)Google Scholar
  26. R. R. Singh and K. S. Pitzer, “Relationships in the Approach to Criticality in Fluids, Including Systematic Differences Between Vapor-Liquid and Liquid-Liquid Systems,” J. Chem. Phys. 90, 5742–5748 (1989).Google Scholar
  27. K. S. Pitzer and J. C. Tanger IV, “Critical Exponents for the Coexistence Curves for NaCl-H2O Near the Critical Temperature of H2O. Reply to Comment by A. H. Harvey and J. M. H. Levelt Sengers,” Chem. Phys. Lett. 156, 418–419 (1989).Google Scholar
  28. J. C. Tanger IV and K. S. Pitzer, “Calculation of the Thermodynamic Properties of Aqueous Electrolytes to 1000°C and 5000 bar from a Semicontinuum Model for Ion Hydration,” J. Phys. Chem. 93, 4941–4951 (1989).Google Scholar
  29. J. C. Tanger IV and K. S. Pitzer, “Thermodynamics of NaCl-H2O: a New Equation of State for the Near-Critical Region and Comparisons with Other Equations for Adjoining Regions,” Geochim. Cosmochim. Acta 53, 973–987 (1989).Google Scholar
  30. D. R. Schreiber and K. S. Pitzer, “Equation of State in the Acentric Factor System.” Fluid Phase Equil. 46, 113–130 (1989).Google Scholar
  31. L. M. Connaughton, F. J. Millero, and K. S. Pitzer, “Volume Changes for Mixing the Major Sea Salts: Equations Valid to Ionic Strength 3.0 and Temperature 95°C,” J. Solution Chem. 18, 1007–1017 (1989).Google Scholar
  32. J. C. Tanger IV and K. S. Pitzer, “Calculation of the Ionization Constant of H2O to 2273 K and 500 MPa,” AIChE J. 35, 1631–1638 (1989).Google Scholar
  33. R. T. Pabalan and K. S. Pitzer, “Models for Aqueous Electrolyte Mixtures for Systems Extending from Dilute Solutions to Fused Salts,” in Chemical Modeling of Aqueous Systems II, ACS Symposium Series 416, Chap. 4, D. C. Melchior and R. L. Bassett, eds. (American Chemical Society, Washington, D.C., 1990).Google Scholar
  34. J. K. Hovey, K. S. Pitzer, J. C. Tanger IV, J. L. Bischoff, and R. J. Rosenbauer, “Vapor-Liquid Phase Equilibria of Potassium Chloride-Water Mixtures: Equation-of-State Representation for KCl-H2O and NaCl-H2O,” J. Phys. Chem. 94, 1175–1179 (1990).Google Scholar
  35. R. R. Singh and K. S. Pitzer, “Rectilinear Diameters and Extended Corresponding States Theory,” J. Chem. Phys. 92, 3096–3099 (1990).Google Scholar
  36. R. T. Pabalan and K. S. Pitzer, “Prediction of High-Temperature Thermodynamic Properties of Mixed Electrolyte Solutions Including Solubility Equilibria, Vapor Pressure Depression and Boiling Point Elevation,” Proceedings of the 1987 Symposium on Chemistry in High-Temperature Water, Report EPRI NP-6005, Electric Power Research Institute, Palo Alto, CA, 1990.Google Scholar
  37. R. R. Singh, K. S. Pitzer, J. J. de Pablo, and J. M. Prausnitz, “Monte Carlo Simulation of Phase Equilibria for the Two-Dimensional Lennard-Jones Fluid in the Gibbs Ensemble,” J. Chem. Phys. 92, 5463–5466 (1990).Google Scholar
  38. R. R. Singh and K. S. Pitzer, “Near-Critical Coexistence Curve and Critical Exponent of an Ionic Fluid,” J. Chem. Phys. 92, 6775–6778 (1990).Google Scholar
  39. K. S. Pitzer, “Second Virial Coefficients for Mixed Gases of Low Polarity,” Fluid Phase Equil. 59, 109–113 (1990).Google Scholar
  40. K. S. Pitzer, “Critical Phenomena in Ionic Fluids,” Acc. Chem. Res. 23, 333–338 (1990).Google Scholar
  41. R. R. Singh and K. S. Pitzer, “Reply to Comment on: ‘Near-critical Coexistence Curve and Critical Exponent of an Ionic Fluid,’” J. Chem. Phys. 93, 8406 (1990).Google Scholar
  42. K. Balasubramanian, P. A. Christiansen, and K. S. Pitzer, “Comment on ‘Relativistic Effects in Bonding and Dipole Moments for the Diatomic Hydrides of the Sixth-Row Heavy Elements,’” Phys. Rev. A 43, 2581–2582 (1991).PubMedGoogle Scholar
  43. A. Anderko and K. S. Pitzer, “Equation of State for Pure Fluids and Mixtures Based on a Truncated Virial Expansion,” AIChE J. 37, 1379–1391 (1991).CrossRefGoogle Scholar
  44. R. G. Anstiss and K. S. Pitzer, “Thermodynamics of Very Concentrated Aqueous Electrolytes: LiCl, ZnCl2, and ZnCl2-NaCl at 25°C,” J. Solution Chem. 20, 849–858 (1991).Google Scholar
  45. K. S. Pitzer and R. R. Singh, “Reply to Comment on: ‘Rectilinear Diameters and Extended Corresponding States Theory,’” J. Chem. Phys. 95, 9426–9427 (1991).Google Scholar
  46. K. S. Pitzer, “Ion Interaction Approach: Theory and Data Correlation,” in Activity Coefficients in Electrolyte Solutions, 2nd edn., Chap. 3, K. S. Pitzer, ed. (CRC Press, Boca Raton, Florida, 1991).Google Scholar
  47. R. T. Pabalan and K. S. Pitzer, “Mineral Solubilities in Electrolyte Solutions,” in Activity Coefficients in Electrolyte Solutions, 2nd edn., Chap. 7, K. S. Pitzer, ed. (CRC Press, Boca Raton, Florida, 1991).Google Scholar
  48. S. L. Clegg and K. S. Pitzer, “Thermodynamics of Multicomponent, Miscible, Ionic Solutions: Generalized Equations for Symmetrical Electrolytes,” J. Phys. Chem. 96, 3513–3520 (1992); correction, J. Phys. Chem. 98, 1368 (1994).Google Scholar
  49. I-M. Chou, S. M. Sterner, and K. S. Pitzer, “Phase Relations in the System NaCl-KCl-H2O: IV. Differential Thermal Analysis of the Sylvite Liquidus in the KCl-H2O Binary, the Liquidus in the NaCl-KCl-H2O Ternary, and the Solidus in the NaCl-KCl Binary to 2 kb Pressure, and a Summary of Experimental Data for Thermodynamic-PTX Analysis of Solid-Liquid Equilibria at Elevated P-T Conditions,” Geochim. Cosmochim. Acta 56, 2281–2293 (1992).Google Scholar
  50. S. M. Sterner, I-M. Chou, R. T. Downs, and K. S. Pitzer, “Phase Relations in the System NaCl-KCl-H2O: V. Thermodynamic-PTX Analysis of Solid-Liquid Equilibria at High Temperatures and Pressures,” Geochim. Cosmochim. Acta 56, 2295–2309 (1992).Google Scholar
  51. S. L. Clegg, K. S. Pitzer, and P. Brimblecombe, “Thermodynamics of Multicomponent, Miscible, Ionic Solutions. 2. Mixtures Including Unsymmetrical Electrolytes,” J. Phys. Chem. 96, 9470–9479 (1992); correction, J. Phys. Chem. 98, 1368 (1994).Google Scholar
  52. A. Anderko and K. S. Pitzer, “Equation of State for Pure Sodium Chloride,” Fluid Phase Equil. 79, 103–112 (1992).Google Scholar
  53. K. S. Pitzer, A. Anderko, and S. M. Sterner, “Virial Coefficients and Equations of State for Mixed Fluids; Application to CH4-H2O,” Fluid Phase Equil. 79, 125–137 (1992).Google Scholar
  54. R. N. Roy, K. M. Vogel, C. E. Good, W. B. Davis, L. N. Roy, D. A. Johnson, A. R. Felmy, and K. S. Pitzer, “Activity Coefficients in Electrolyte Mixtures: HCl + ThCl4 + H2O for 5–55°C,” J. Phys. Chem. 96, 11065–11072 (1992).Google Scholar
  55. K. S. Pitzer, “Thermodynamics of Natural and Industrial Waters,” J. Chem. Thermodyn. 25, 7–26 (1993).CrossRefGoogle Scholar
  56. J. K. Hovey, K. S. Pitzer, and J. A. Rard, “Thermodynamics of Na2SO4(aq) at Temperatures T from 273 K to 373 K and of {(1−y)H2SO4 + yNa2SO4}(aq) at T = 298.15 K,” J. Chem. Thermodyn. 25, 173–192 (1993).Google Scholar
  57. K. S. Pitzer and Y. Shi, “Thermodynamics of Calcium Chloride in Highly Concentrated Aqueous Solution and in Hydrated Crystals,” J. Solution Chem. 22, 99–105 (1993).Google Scholar
  58. A. Anderko and K. S. Pitzer, “Equation-of-State Representation of Phase Equilibria and Volumetric Properties of the System NaCl-H2O Above 573 K,” Geochim. Cosmochim. Acta 57, 1657–1680 (1993).CrossRefGoogle Scholar
  59. A. Anderko, J. P. Chan, and K. S. Pitzer, “On the Apparent Molar Volumes of Nonelectrolytes in Water,” J. Solution Chem. 22, 369–382 (1993).Google Scholar
  60. K. S. Pitzer and S. M. Sterner, “Equations of State for Solid NaCl-KCl and Saturated Liquid NaCl-KCl-H2O,” Thermochim. Acta 218, 413–423 (1993).Google Scholar
  61. A. Anderko and K. S. Pitzer, “Phase Equilibria and Volumetric Properties of the Systems KCl-H2O and NaCl-KCl-H2O Above 573 K: Equation of State Representation,” Geochim. Cosmochim. Acta 57, 4885–4897 (1993).CrossRefGoogle Scholar
  62. K. S. Pitzer, “Joel Henry Hildebrand,” in Biographical Memoirs, Vol. 62 (National Academy Press, Washington, D.C., 1993), pp. 225–257.Google Scholar
  63. C. S. Oakes, R. J. Bodnar, J. M. Simonson, and K. S. Pitzer “Critical and Supercritical Properties for 0.3 to 3.0 mol-kg−1 CaCl2(aq),” Geochim. Cosmochim. Acta 58, 2421–2431 (1994).Google Scholar
  64. S. L. Clegg, J. A. Rard, and K. S. Pitzer, “Thermodynamic Properties of 0–6 mol kg−1 Aqueous Sulfuric Acid from 273.15 to 328.15 K,” J. Chem. Soc. Faraday Trans. 90, 1875–1894 (1994).Google Scholar
  65. K. S. Pitzer and C. S. Oakes, “Thermodynamics of Calcium Chloride in Concentrated Aqueous Solutions and in Crystals,” J. Chem. Eng. Data 39, 553–559 (1994).Google Scholar
  66. K. S. Pitzer and S. M. Sterner, “Equations of State Valid Continuously from Zero to Extreme Pressures for H2O and CO2J. Chem. Phys. 101, 3111–3116 (1994).Google Scholar
  67. T. Narayanan and K. S. Pitzer, “Critical Behavior of Ionic Fluids,” J. Phys. Chem. 98, 9170–9174 (1994).Google Scholar
  68. B. S. Krumgalz, R. Pogorelsky, Ya. A. Iosilevskii, A. Weiser, and K. S. Pitzer, “Ion Interaction Approach for Volumetric Calculations for Solutions of Single Electrolytes at 25°C,” J. Solution Chem. 23, 849–875 (1994).Google Scholar
  69. T. Narayanan and K. S. Pitzer, “Mean-Field to Ising Crossover in Ionic Fluids,” Phys. Rev. Lett. 73, 3002–3005 (1994).PubMedGoogle Scholar
  70. S. M. Sterner and K. S. Pitzer, “An Equation of State for Carbon Dioxide Valid from Zero to Extreme Pressures,” Contrib. Mineral. Petrol. 117, 362–374 (1994).Google Scholar
  71. T. Narayanan and K. S. Pitzer, “Turbidity of a Near Critical Ionic Fluid,” Int. J. Thermophys. 15, 1037–1043 (1994).Google Scholar
  72. S. Jiang and K. S. Pitzer, “Thermodynamic Properties of Mixtures of Dipolar and Quadrupolar Hard Spheres: Theory and Simulation,” J. Chem. Phys. 102, 7632–7640 (1995).CrossRefGoogle Scholar
  73. T. Narayanan and K. S. Pitzer, “Critical Phenomena in Ionic Fluids: A Systematic Investigation of the Crossover Behavior,” J. Chem. Phys. 102, 8118–8131 (1995).Google Scholar
  74. C. S. Oakes, R. J. Bodnar, J. M. Simonson, and K. S. Pitzer, “CaCl2-H2O in the Supercritical and Two-Phase Ranges,” Int. J. Thermophys. 16, 483–492 (1995).Google Scholar
  75. K. S. Pitzer and S. M. Sterner, “Equations of State Valid Continuously from Zero to Extreme Pressures with H2O and CO2 as Examples,” Int. J. Thermophys. 16, 511–518 (1995).Google Scholar
  76. K. S. Pitzer, “Ionic Fluids: Near-Critical and Related Properties,” J. Phys. Chem. 99, 13070–13077 (1995).Google Scholar
  77. B. S. Krumgalz, R. Pogorelsky, and K. S. Pitzer, “Ion Interaction Approach to Calculations of Volumetric Properties of Aqueous Multiple-Solute Electrolyte Solutions,” J. Solution Chem. 24, 1025–1038 (1995).Google Scholar
  78. S. Jiang and K. S. Pitzer, “Phase Equilibria and Volumetric Properties of Aqueous CaCl2 by an Equation of State,” AIChE J. 42, 585–594 (1996).CrossRefGoogle Scholar
  79. K. S. Pitzer and S. Jiang, “Equation of State for NaCl-H2O: Comparison with Mineral Dehydration Equilibria,” Contrib. Mineral. Petrol. 122, 428–430 (1996).Google Scholar
  80. K. S. Pitzer and D. A. Shirley, “William Francis Giauque,” in Biographical Memoirs, Vol. 69 (National Academy Press, Washington, D. C., 1996), pp. 39–57.Google Scholar
  81. K. S. Pitzer, “Sodium Chloride Vapor at Very High Temperatures: Linear Polymers are Important,” J. Chem. Phys. 104, 6724–6729 (1996).CrossRefGoogle Scholar
  82. B. S. Krumgalz, R. Pogorelsky, and K. S. Pitzer, “Volumetric Properties of Single Aqueous Electrolytes from Zero to Saturation Concentration at 298.15 K Represented by Pitzer's Ion-Interaction Equations,” J. Phys. Chem. Ref. Data 25, 663–689 (1996).Google Scholar
  83. Z. Li and K. S. Pitzer, “Thermodynamics of Aqueous KOH over the Full Range to Saturation and to 573 K,” J. Solution Chem. 25, 813–823 (1996).Google Scholar
  84. L. N. Roy, T. M. Beasley, K. M. Kuhler, J. K. Bice, W. S. Good, R. N. Roy, and K. S. Pitzer, “The System HCl + InCl3 + H2O from 5 to 55°C: Application of Harned's Rule,” J. Solution Chem. 25, 1241–1259 (1996).Google Scholar
  85. S. V. Petrenko and K. S. Pitzer, “Thermodynamics of Aqueous NaOH over the Complete Composition Range and to 523 K and 400 MPa,” J. Phys. Chem. B 101, 3589–3595 (1997).Google Scholar
  86. K. S. Pitzer, R. N. Roy, and P. Wang, “Thermodynamics of the System InCl3-HCl-H2O at 25°C,” J. Phys. Chem. B 101, 4120–4126 (1997).Google Scholar
  87. P. Wang, C. S. Oakes, and K. S. Pitzer, “Thermodynamics of Aqueous Mixtures of Magnesium Chloride with Sodium Chloride from 298.15 to 573.15 K. New Measurements of the Enthalpies of Mixing and of Dilution,” J. Chem. Eng. Data 42, 1101–1110 (1997).Google Scholar
  88. K. S. Pitzer and B. Das, “Thermodynamic Properties of Na2SO4(aq) above 200°C,” Geochim. Cosmochim. Acta 62, 915–916 (1998).Google Scholar
  89. C. S. Oakes, K. S. Pitzer, and S. M. Sterner, “The System NaCl-CaCl2-H2O: Part 3. Heats of Dilution and Mixing at 373 to 573 K and 21.5 MPa Using a New High-Temperature, Flow-Through Calorimeter,” Geochim. Cosmochim. Acta 62, 1133–1146 (1998).Google Scholar
  90. K. S. Pitzer, “Aqueous Electrolytes at Near-Critical and Supercritical Temperatures,” Int. J. Thermophys. 19, 355–366 (1998).Google Scholar
  91. K. S. Pitzer, R. N. Roy, and P. Wang, “Thermodynamics of the System InCl3-HCl-H2O at 25°C,” Int. J. Thermophys. 19, 731–738 (1998).Google Scholar
  92. P. Wang, C. S. Oakes, and K. S. Pitzer, “Thermodynamics of the System MgCl2-NaCl-H2O to 573 K: New Measurements of Heat of Mixing and Heat of Dilution,” Int. J. Thermophys. 19, 739–748 (1998).Google Scholar
  93. S. M. Sterner, A. R. Felmy, C. S. Oakes, and K. S. Pitzer, “Correlation of Thermodynamic Data for Aqueous Electrolyte Solutions to Very High Ionic Strengths Using INSIGHT: Vapor Saturated Water Activity in the System CaCl2-H2O to 250°C and Solid Saturation,” Int. J. Thermophys. 19, 761–770 (1998).Google Scholar
  94. P. Wang, K. S. Pitzer, and J. M. Simonson, “Thermodynamic Properties of Aqueous Magnesium Chloride Solutions from 250 to 600 K and to 100 MPa,” J. Phys. Chem. Ref. Data 27, 971–991 (1998).Google Scholar
  95. K. S. Pitzer, P. Wang, J. A. Rard, and S. L. Clegg, “Thermodynamics of Electrolytes. 13. Ionic-Strength Dependence of Higher-Order Terms; Equations for CaCl2 and MgCl2.” J. Solution Chem. 28, 265–282 (1999).Google Scholar
  96. B. Das and K. S. Pitzer, “Thermodynamic Properties of K2SO4(aq) under Superambient Conditions,” J. Solution Chem. 28, 283–290 (1999).Google Scholar
  97. B. S. Krumgalz, R. Pogorelskii, and K. S. Pitzer, “Volumetric Ion Interaction Parameters for Single-Solute Electrolyte Aqueous Solutions at Various Temperatures,” J. Phys. Chem. Ref. Data, submitted.Google Scholar
  98. B. Das and K. S. Pitzer, “Osmotic and Activity Coefficients of KF(aq) Under High Pressures,” Z. Phys. Chem., submitted.Google Scholar
  99. B. Das and K. S. Pitzer, “Thermodynamics of Aqueous Solutions of p-Toluenesulfonic Acid and Some Alkali Metal Salts from 298.15 to 353.15 K,” Bull. Chem. Soc. Jpn., submitted.Google Scholar

Books

  1. F. D. Rossini, K. S. Pitzer, W. J. Taylor, J. E. Kilpatrick, C. W. Beckett, M. D. Williams, and H. C. Werner, Selected Values of Properties of Hydrocarbons, National Bureau of Standards Circular C461 (U. S. Government Printing Office, Washington, D. C., 1947).Google Scholar
  2. F. D. Rossini, K. S. Pitzer, R. L. Arnett, R. M. Brown, and G. C. Pimentel, Selected Values of Physical and Thermodynamic Properties of Hydrocarbons and Related Compounds (published for the American Petroleum Institute by the Carnegie Press, Pittsburgh, PA, 1953). (This is essentially a second edition of the previous book.)Google Scholar
  3. K. S. Pitzer, Quantum Chemistry (Prentice-Hall, Englewood Cliffs, NJ, 1953).Google Scholar
  4. K. S. Pitzer and L. Brewer, 2nd edn. of G. N. Lewis and M. Randall's Thermodynamics (McGraw-Hill, New York, 1961).Google Scholar
  5. K. S. Pitzer, ed., Activity Coefficients in Electrolyte Solutions, 2nd edn. (CRC Press, Boca Raton, 1991).Google Scholar
  6. K. S. Pitzer, Molecular Structure and Statistical Thermodynamics: Selected Papers of Kenneth S. Pitzer (World Scientific, Singapore, 1993) (Comprised of selected papers with added comments.)Google Scholar
  7. K. S. Pitzer, Thermodynamics, 3rd edn. (McGraw-Hill, New York, 1995).Google Scholar

Copyright information

© Plenum Publishing Corporation 1999

Personalised recommendations