International Journal of Thermophysics

, Volume 20, Issue 3, pp 777–790 | Cite as

Viscosity of Gaseous R404A, R407C, R410A, and R507

  • H. Nabizadeh
  • F. Mayinger


This paper presents new measurements of the viscosity of gaseous R404A (52 wt% R143a, 44 wt% R125, 4 wt% R134a), R407C (23 wt% R32, 25 wt% R125, 52 wt% R143a), R410A (50 wt% R32, 50 wt% R125), and R507 (50 wt% R143a, 50 wt% R125). These mixtures are recommended as substitutes for the refrigerants R22, R502, and R13B1. Measurements were carried out in an oscillating-disk viscometer. The obtained values of the viscosity are relative to the viscosity of nitrogen. The experiments were performed at atmospheric pressure over the temperature range 297 to 403 K. and near the saturation line up to pressures of 0.6 Pcrit. The estimated uncertainty of the reported viscosities are ±0.5% for the viscosities at atmospheric pressure and ± 1% along the saturation line, being limited by the accuracy of the available vapor pressure and density data. The experimental viscosities at atmospheric pressure are employed to determine the intermolecular potential parameters, σ and ɛ, which provide the optimum representation of the data with the aid of the extended law of corresponding states developed by Kestin et al. A comparison of the experimental viscosity data with the values calculated by REFPROP, both at atmospheric pressure and along the saturation line, is presented.

gaseous R404A R407C R410A R507 refrigerants saturation viscosity 


  1. 1.
    F. Mayinger and H. Nabizadeh, Deutsche Kälte-Klimatech 2:83 (1992).Google Scholar
  2. 2.
    H. Nabizadeh and F. Mayinger, Int. J. Thermophys. 10:701 (1989).Google Scholar
  3. 3.
    H. Nabizadeh and F. Mayinger, High Temp. High Press. 24:221 (1992).Google Scholar
  4. 4.
    G. F. Newell, ZAMP 10:160 (1959).Google Scholar
  5. 5.
    J. Kestin and H. E. Wang, Physika 26:575 (1960).Google Scholar
  6. 6.
    J. Kestin, W. Leidenfrost, and C. W. Liu, ZAMP 10:558 (1959).Google Scholar
  7. 7.
    J. Kestin and J. H. Whitelaw, Physika 29:335 (1963).Google Scholar
  8. 8.
    K. Stephan, R. Krauss, and A. Laesecke, J. Phys. Chem. Ref. Data 16:993 (1987).Google Scholar
  9. 9.
    R. Döring, H. Buchwald, and J. Hellmann, Deutsche Kälte-und Klimatech, 2:29(1994).Google Scholar
  10. 10.
    R. Döring and H. Buchwald, Deutsche Kälte-Klimatech 2:211 (1994).Google Scholar
  11. 11.
    Private communication, KLEA 66 (407C), Thermodynamic Property Data for Klea 66, ICI KLEA (1994).Google Scholar
  12. 12.
    M. Huber, J. Gallagher, M. McLinden, and G. Morrison, NIST Thermodynamic Properties of Refrigerants and Refrigerant Mixtures Database (REFPROP), Version 5.0 (NIST, Boulder, CO, 1996).Google Scholar
  13. 13.
    J. Kestin, S. T. Ro, and W. Wakeham, Physika 58:165 (1972).Google Scholar
  14. 14.
    J. B. Hirschfelder, C. F. Curtiss, and R. B. Bird, Molecular Theory of Gases and Liquids (Wiley, New York, 1966), pp. 514-631.Google Scholar
  15. 15.
    Private communication, Du Pont, Production Information for Transport Properties of SUVA HP 62 (R404A) (1993).Google Scholar

Copyright information

© Plenum Publishing Corporation 1999

Authors and Affiliations

  • H. Nabizadeh
    • 1
  • F. Mayinger
    • 1
  1. 1.Lehrstuhl A für ThermodynamikTechnische Universität MünchenGarchingGermany

Personalised recommendations