Advertisement

Periodic Wavelets from Scratch

  • Gilbert G. Walter
  • Luchuan Cai
Article

Abstract

Periodic wavelets can be constructed from most standard wavelets by periodization. In this work we first derive some of their properties and then construct the periodic wavelets directly from their Fourier series without reference to standard wavelets. Several examples are given some of which are not constructable from the usual wavelets on the real line.

Fourier series orthogonal dilation equation multiresolution trigonometric polynomial 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    P. Auscher, Ondelettes à support et conditions aux limites, J. Funct. Anal. 11, 29-43 (1993).Google Scholar
  2. 2.
    G. Beylkin, R. Coifman, and V. Rokhlin, Fast wavelet transforms and numerical algorithms, Commun. Pure Appl. Math. 44, 141-183 (1991).Google Scholar
  3. 3.
    Luchuan Cai, Convergence and properties of wavelets on compact intervals, PhD Thesis, UWM, Milwaukee, 1996.Google Scholar
  4. 4.
    I. Daubechies, Ten Lectures on Wavelets, SIAM, Philadelphia, 1992.Google Scholar
  5. 5.
    R. DeVore, B. Jawerth, and V. Popov, Image compression through transform coding, IEEE Trans. Inf. Theory 38, 719-746 (1992).Google Scholar
  6. 6.
    D. Donoho, Denoising by soft thresholding, IEEE Trans. Inf. Theory 41, 613-627 (1995).Google Scholar
  7. 7.
    S. Mallat, A theory of multiresolution signal decomposition: the wavelet representation, IEEE Trans. Pattern Anal. Mach. Intel. 11, 647-693 (1989).Google Scholar
  8. 8.
    Y. Meyer, Wavelets and Operators, Cambridge University Press, 1993.Google Scholar
  9. 9.
    G. G. Walter, Wavelets and Other Orthogonal Systems with Applications, CRC Press, Boca Raton, Florida, 1994.Google Scholar
  10. 10.
    A. Zygmund, Trigonometric Series, Vols. I and II, Cambridge University Press, New York, 1957.Google Scholar

Copyright information

© Plenum Publishing Corporation 1999

Authors and Affiliations

  • Gilbert G. Walter
    • 1
  • Luchuan Cai
    • 1
  1. 1.Department of Mathematical SciencesUniversity of Wisconsin-MilwaukeeMilwaukee, Wisconsin

Personalised recommendations