The Microstructure of Direct Squeeze Cast and Gravity Die Cast 7050 (Al–6.2Zn–2.3Cu–2.3Mg) Wrought Al Alloy

  • S-W. Kim
  • G. Durrant
  • J-H. Lee
  • B. Cantor


A 7050 (Al–6.2 wt% Zn–2.3 wt% Cu–2.3 wt% Mg) Al alloy, conventionally used for wrought products, has been successfully cast to near-net shape using direct squeeze casting. Squeeze casting with an applied pressure of 50 MPa removes the defects observed in gravity die cast billets, in particular, (1) shrinkage pipe, (2) poor die replication and waisting, and (3) microporosity. Squeeze casting results in considerable refinement of the microstructure due to an increase in cooling rate from ∼0.5°C s−1 for gravity casting to ∼11°C s−1 for squeeze casting in a tool steel die lined with porous insulation, and from ∼2.5 to ∼10°C s−1, respectively, in an uninsulated die. A normal segregation pattern of increasing eutectic toward the center of the billet is found for squeeze casting, compared to an inverse segregation pattern of increasing eutectic toward the edge of the billet for gravity casting. This change in segregation pattern is due to a higher radial temperature gradient and reduced time in the semisolid state for squeeze casting.

Squeeze casting solidification Al alloy microstructure 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. A. Chadwick and T. M. Yue, Met. Mater. 5, 6 (1989).Google Scholar
  2. 2.
    Product Design and Specifications for Squeeze Casting (ELM International Inc., East Lansing, MI, 1994).Google Scholar
  3. 3.
    M. Gallerneault, G. Durrant, and B. Cantor, Met. Trans. A 27A, 4121 (1996).Google Scholar
  4. 4.
    Metals Handbook, 9th ed. (ASM, Metals Park, OH, 1979).Google Scholar
  5. 5.
    D. L. Zhang, C. Brindley, and B. Cantor, J. Mater. Sci. 28, 2267 (1993).Google Scholar
  6. 6.
    J. Campbell, Castings (Butterworth-Heinemann, Oxford, UK, 1991).Google Scholar
  7. 7.
    I. J. Polmear, Light Alloys, 2nd ed. (Edward Arnold, London, 1989).Google Scholar
  8. 8.
    M. F. Flemings, Solidification Processing (McGraw-Hill, London, 1974).Google Scholar
  9. 9.
    D. L. Zhang and B. Cantor, Model. Simul. Mater. Sci. Eng. 3, 121 (1995).Google Scholar
  10. 10.
    J. A. Sekhar, G. J. Abbaschian, and R. Mehrabian, Mater. Sci. Eng. 40, 105 (1979).Google Scholar
  11. 11.
    M. Gallerneault, G. Durrant, and B. Cantor, Scripta Met. 32, 1553 (1995).Google Scholar
  12. 12.
    G. S. Reddy and J. A. Sekhar, Acta. Metall. 37, 1509 (1989).Google Scholar
  13. 13.
    G. S. Reddy and J. A. Sekhar, Principles of Solidification and Materials Processing, Vol. 1 (Oxford and IBH, Oxford, IBSN 81-204-0448-3, 1989).Google Scholar
  14. 14.
    J. H. Perepezko, Mater. Sci. Eng. 65, 125 (1984).Google Scholar

Copyright information

© Plenum Publishing Corporation 1998

Authors and Affiliations

  • S-W. Kim
    • 1
  • G. Durrant
    • 2
  • J-H. Lee
    • 3
  • B. Cantor
    • 2
  1. 1.Chonbuk National UniversityChonjuKorea
  2. 2.University of OxfordUK
  3. 3.RASOMChungnam National UniversityTaejonKorea

Personalised recommendations