Effect of Sol-Gel Processing Parameters on Optical Properties of TMOS Silica Aerogels

  • A. Venkateswara Rao
  • G. M. Pajonk
  • D. Haranath
  • P. B. Wagh


To optimize and produce silica aerogels with high direct transmittance and low diffusive values, systematic and detailed experiments were carried out on the effect of sol-gel processing parameters on optical properties of silica aerogels. A series of aerogel samples of different molar ratio combinations was optically examined in the UV–visible–NIR range by a spectrophotometer equipped with an integrating sphere. The overall transmittance of the aerogels in the visible range varied from 75 to 93% depending upon the molar ratio combination. The most relevant parameter being studied was the direct/hemispherical transmittance ratio (τ). The best value of τ obtained for an aerogel in the present study was about 93% with a molar ratio of 1 TMOS: 12 MeOH:4 H2O:3.5 × 10−3 NH4OH, respectively. Apart from visible transparencies, solar energetic transparencies of some silica aerogels were also measured and reported. These optical data, together with the porosity measurements, allowed us to improve the process of fabrication of low-diffusing aerogel material. The experimental results are discussed considering the percentage of porosity and heterogeneity generated in pore size distributions due to the variation of sol-gel processing parameters.

Silica aerogel optical transmittance spectrophotometry pore size distribution aerogel windows 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Cantin, M. Casse, L. Koch, R. Jouan, P. Mestreau, D. Roussel, F. Bonnin, J. Moutel, and S. J. Teichner, Nucl. Instr. Meth. 118, 117 (1974).Google Scholar
  2. 2.
    M. Bourdinaud, J. B. Cheze, and J. C. Thevenin, Nucl. Instr. Meth. 136, 99 (1976).Google Scholar
  3. 3.
    K. E. Johansson, J. Norrby, and J. P. Lagnaux, Nucl. Instr. Meth. 154, 253 (1978).Google Scholar
  4. 4.
    G. Poelz and R. Riethmuller, Nucl. Instr. Meth. 195, 491 (1982).Google Scholar
  5. 5.
    A. Venkateswara Rao, G. M. Pajonk, N. N. Parvathy, and E. Elaloui, in Sol-Gel Processing and Applications, Y. A. Attia, ed. (Plenum, New York, 1994), p. 237.Google Scholar
  6. 6.
    A. J. Hunt and P. Berdahl, MRS Symp. Proc. 32, 275 (1985).Google Scholar
  7. 7.
    P. Lourdin, J. Appell, J. Pelous, and T. Woignier, Proc. 2nd ISA, Rev. Phys. Appl., C4–197, Ed. Physique (1989).Google Scholar
  8. 8.
    P. Wang, W. Korner, A. Emmerling, A. Becs, J. Kuhn, and J. Fricke, J. Non-Cryst. Solids 145, 141 (1992).Google Scholar
  9. 9.
    A. Beck, O. Gelsen, P. Wang, and J. Fricke, Proc. 2nd ISA, Rev. Phys. Appl., C4–203, Ed. Physique (1989).Google Scholar
  10. 10.
    A. J. Hunt and M. Martin, Proc. 3rd ISA, Wurzberg (1991).Google Scholar
  11. 11.
    K. I. Jensen, J. Non-Cryst. Solids 145, 237 (1992).Google Scholar
  12. 12.
    V. Wittwer, J. Non-Cryst. Solids 145, 233 (1992).Google Scholar
  13. 13.
    D. Buttner and J. Fricke, Int. J. Sol. Energy 3, 89 (1985).Google Scholar
  14. 14.
    R. Caps and J. Fricke, Sol. Energy 36, 361 (1986).Google Scholar
  15. 15.
    E. Schreiber, E. Boy, and K. Bertsch, Proc. 1st ISA, Wurzberg (1985).Google Scholar
  16. 16.
    A. Venkateswara Rao, G. M. Pajonk, and N. N. Parvathy, J. Mater. Sci. 29, 1807 (1994).Google Scholar
  17. 17.
    W. W. Wendlandt and H. G. Hecht, Reflectance Spectroscopy (Interscience, New York, 1996).Google Scholar
  18. 18.
    CIE Tc-2.3, Technical Report on Absolute Reflectance Measurements (1979).Google Scholar
  19. 19.
    M. Rubin and C. M. Lambert, Sol. Energy Mat. 7, 393 (1993).Google Scholar
  20. 20.
    J. C. Pouxviel, J. P. Boilot, J. C. Beloeil, and J. Y. Lallemand, J. Non-Cryst. Solids 89, 345 (1987).Google Scholar
  21. 21.
    G. W. Scherer, J. Non-Cryst. Solids 145, 33 (1992).Google Scholar
  22. 22.
    B. E. Yoldas, J. Non-Cryst. Solids 82, 11 (1986).Google Scholar

Copyright information

© Plenum Publishing Corporation 1998

Authors and Affiliations

  • A. Venkateswara Rao
    • 1
  • G. M. Pajonk
    • 2
  • D. Haranath
    • 1
  • P. B. Wagh
    • 1
  1. 1.Air Glass Laboratory, Department of PhysicsShivaji UniversityKolhapurIndia
  2. 2.Laboratorie d'Application de la Chimie a l'EnvironmentUniversite Claude Bernard, Lyon IVilleurbanne CedexFrance

Personalised recommendations