Journal of Nondestructive Evaluation

, Volume 17, Issue 3, pp 129–140 | Cite as

Evaluation of Residual Stresses in the Bulk of Materials by High Energy Synchrotron Diffraction

  • W. Reimers
  • M. Broda
  • G. Brusch
  • D. Dantz
  • K.-D. Liss
  • A. Pyzalla
  • T. Schmackers
  • T. Tschentscher


High energy synchrotron diffraction is introduced as a new method for residual stress analysis in the bulk of materials. It is shown that energy dispersive measurements are sufficiently precise so that strains as small 10−4 can be determined reliably. Due to the high intensity and the high parallelism of the high energy synchrotron radiation the sample gauge volume can be reduced to approximately 50 μm × 1 mm × 1 mm compared to gauge volume of one mm3 up to several mm3 achievable by neutron diffraction. The benefits of the high penetration depth and the small gauge volume are demonstrated by the results of stress studies performed on a fiber reinforced ceramic, a functional gradient material and a metal–ceramic compound. Furthermore, it is shown that in case of a cold extruded metal specimen the energy dispersive measurement technique yields simultaneous information about texture and residual stresses and thus allows a detailed investigation of elastic and plastic deformation gradients.

Residual stress high energy synchrotron diffraction energy dispersive diffraction 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. Ruppersberg and I. Detemple, Mater. Sci. Eng. A161: 41–44 (1993).Google Scholar
  2. 2.
    H. Ruppersberg, Adv. X-Ray Anal. 35: 481–487 (1992).Google Scholar
  3. 3.
    G. Brusch and W. Reimers, Proceedings of the ICRS 5, Linköping, Sweden, 1997, pp. 557–562.Google Scholar
  4. 4.
    M. Hutchings, Neutron News 3: 14–19 (1992).Google Scholar
  5. 5.
    L. Pintschovius, in Measurement of Residual and Applied Stress Using Neutron Diffraction, M. Hutchings and A. Krawitz, eds. (Kluwer Academic Publisher Dordrecht, Boston, London, 1989), pp. 115–128.Google Scholar
  6. 6.
    C. J. Bechtoldt, R. C. Placious, W. J. Boettinger, and M. Kuriyama Adv. X-Ray Anal. 25: 330–338 (1981).Google Scholar
  7. 7.
    R. D. Black, C. J. Bechtoldt, R. C. Placious, and M. Kuriyama, J. Nondestr. Eval. 5(1): 21–25 (1985).Google Scholar
  8. 8.
    J. Neuefeind and H. F. Poulsen, Phys. Scripta T57: 112–116 (1995).Google Scholar
  9. 9.
    H. F. Poulsen, S. Garbe, T. Lorentzen, D. J. Jensen, F. W. Poulsen, N. H. Andersen, T. Frello, R. Feidenhans, and H. Graafsma, preprint (submitted to J. Synchr. Radiat.).Google Scholar
  10. 10.
    M. R. Daymond and P. J. Withers, Scripta Mater. 35(10): 1229–1234 (1996).Google Scholar
  11. 11.
    P. J. Webster, X. D. Wang, and G. Mills, Mater. Sci. Forum 228–321: 227–232 (1996).Google Scholar
  12. 12.
    C. G. Windsor, in Measurement of Residual and Applied Stress Using Neutron Diffraction, M. Hutchings and A. Krawitz, eds. (Kluwer Academic Publisher Dordrecht, Boston, London, 1989), pp. 285–296.Google Scholar
  13. 13.
    T. Tschentscher and P. Suortti, J. Synchr. Radiat. (submitted).Google Scholar
  14. 14.
    P. Suortti and T. Tschentscher, Rev. Sci. Instr. 66(2): 1798–1801 (1995).Google Scholar
  15. 15.
    J. Chakrabarty, Theory of Plasticity (McGraw-Hill Book Company, New York, 1987), p. 129.Google Scholar
  16. 16.
    R. Ostertag and T. Haug, in Advanced Structural Inorganic Composites, P. Vincenzini, ed. (Elsevier Science Publishers, London, New York, 1991), pp. 469–477.Google Scholar
  17. 17.
    Y. M. Chiang, D. P. Birnie, and W. D. Kingery, Physical Ceramics-Principles for Ceramic Science and Engineering (John Wiley & Sons, New York, 1997), pp. 26–33.Google Scholar
  18. 18.
    P. Müller and E. Macherauch, Z. Angew. Phy. 13: 305–312 (1961).Google Scholar
  19. 19.
    G. Arlt and G. R. Schodder, J. Acoust. Soc. Am. 37: 384 (1965).Google Scholar
  20. 20.
    R. M. Martin, Phys. Rev. B 6: 4546 (1972).Google Scholar
  21. 21.
    B. H. Rabin, R. L. Williamson, and S. Suresh, MRS Bull. 20(1): 37–39 (1995).Google Scholar
  22. 22.
    G. Faninger and U. Hartmann, Härterei Technische Mitteilungen 27: 233–244 (1972).Google Scholar
  23. 23.
    Landolt-Börnstein, Numerical Data and Functional Relationships in Science and Technology, New Series Group III, Vol. 11, K. Hellwege, ed. (Springer Verlag, Berlin, Heidelberg, New York, 1979), p. 50.Google Scholar
  24. 24.
    U. Baron, T. Cosack, R. Elsing, P. Izquierdo, W. Reimers, G. Schäfer, T. Schmackers, C. Schwaminger, and M. Wildau, Abschlußbericht des BMBF-Projektes: Charakterisierung des Spannungs-Dehnungsverhaltens in Metall-keramischen Schichtverbunden, Fördernummer: 03M 2114 B.Google Scholar
  25. 25.
    O. T. Iancu and D. Munz, J. Am. Ceram. Soc. 73: 1144–1149 (1990).Google Scholar
  26. 26.
    G. Wassermann and J. Grewen, Texturen metallischer Werkstoffe (Springer Verlag, Berlin, 1962).Google Scholar
  27. 27.
    A. E. Tekkaya, Ermittlung von Eigenspannungen in der Kaltmasssivumformung, Thesis, Universität Stuttgart (1986).Google Scholar
  28. 28.
    A. Pyzalla and W. Reimers, in Competitive Advantages by Near-Net-Shape Manufacturing, H.-D. Kunze, ed. (DGM—Informationsgesellschaft Verlag, Oberursel, 1997), pp. 175–180.Google Scholar

Copyright information

© Plenum Publishing Corporation 1998

Authors and Affiliations

  • W. Reimers
    • 1
  • M. Broda
    • 1
  • G. Brusch
    • 1
  • D. Dantz
    • 1
  • K.-D. Liss
    • 2
  • A. Pyzalla
    • 1
  • T. Schmackers
    • 1
  • T. Tschentscher
    • 2
  1. 1.Hahn-Meitner-InstitutBerlinGermany
  2. 2.European Synchrotron Radiation Facility ESRFGrenoble CedexFrance

Personalised recommendations