Advertisement

Pharmaceutical Research

, Volume 20, Issue 3, pp 409–416 | Cite as

Direct Evidence That Polysorbate-80-Coated Poly(Butylcyanoacrylate) Nanoparticles Deliver Drugs to the CNS via Specific Mechanisms Requiring Prior Binding of Drug to the Nanoparticles

  • Jörg Kreuter
  • Peter Ramge
  • Valery Petrov
  • Stefan Hamm
  • Svetlana E. Gelperina
  • Britta Engelhardt
  • Renad Alyautdin
  • Hagen von Briesen
  • David J. Begley
Article

Abstract

Purpose. It has recently been suggested that the poly(butylcyanoacrylate) (PBCA) nanoparticle drug delivery system has a generalized toxic effect on the blood-brain barrier (BBB) (8) and that this effect forms the basis of an apparent enhanced drug delivery to the brain. The purpose of this study is to explore more fully the mechanism by which PBCA nanoparticles can deliver drugs to the brain.

Methods. Both in vivo and in vitro methods have been applied to examine the possible toxic effects of PBCA nanoparticles and polysorbate-80 on cerebral endothelial cells. Human, bovine, and rat models have been used in this study.

Results. In bovine primary cerebral endothelial cells, nontoxic levels of PBCA particles and polysorbate-80 did not increase paracellular transport of sucrose and inulin in the monolayers. Electron microscopic studies confirm cell viability. In vivo studies using the antinociceptive opioid peptide dalargin showed that both empty PBCA nanoparticles and polysorbate-80 did not allow dalargin to enter the brain in quantities sufficient to cause antinociception. Only dalargin preadsorbed to PBCA nanoparticles was able to induce an antinociceptive effect in the animals.

Conclusion. At concentrations of PBCA nanoparticles and polysorbate-80 that achieve significant drug delivery to the brain, there is little in vivo or in vitro evidence to suggest that a generalized toxic effect on the BBB is the primary mechanism for drug delivery to the brain. The fact that dalargin has to be preadsorbed onto nanoparticles before it is effective in inducing antinociception suggests specific mechanisms of delivery to the CNS rather than a simple disruption of the BBB allowing a diffusional drug entry.

CNS drug delivery blood-brain barrier nanoparticles poly(butylcyanoacrylate) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    R. Alyautdin, D. Gothier, V. Petrov, D. Kharkevich, and J. Kreuter. Analgesic activity of the hexapeptide dalargin adsorbed on the surface of polysorbate 80-coated poly(butyl cyanoacrylate) nanoparticles. Eur. J. Pharm. Biopharm. 41:44-48 (1995).Google Scholar
  2. 2.
    R. N. Alyautdin, V. E. Petrov, K. Langer, A. Berthold, D. A. Kharkevich, and J. Kreuter. Delivery of loperamide across the blood-brain barrier with poly-sorbate 80-coated polybutylcyanoacrylate nanoparticles. Pharm. Res. 14:325-328 (1997).Google Scholar
  3. 3.
    R. N. Alyautdin, E. B. Tezikov, P. Ramge, D. A. Kharkevich, D. J. Begley, and J. Kreuter. Significant entry of tubocurarine into the brain of rats by absorption to polysorbate 80-coated polybutyl-cyanoacrylate nanoparticles: an in situ brain perfusion study. J. Microencapsul. 15:67-74 (1998).Google Scholar
  4. 4.
    A. E. Gulyaev, S. E. Gelperina, I. N. Skidan, A. S. Antropov, G. Y. Kivman, and J. Kreuter. Significant transport of doxorubicin into the brain with polysorbate 80-coated nanoparticles. Pharm. Res. 16:1564-1569 (1999).Google Scholar
  5. 5.
    A. Friese, E. Seiler, G. Quack, B. Lorenz, and J. Kreuter. Enhancement of the duration of the anticonvulsive activity of a novel NMDA receptor antagonist using poly(butylcyanoacylate) nanoparticles as a parenteral controlled release delivery system. Eur. J. Pharm. Biopharm. 49:103-109 (2000).Google Scholar
  6. 6.
    D. J. Begley, M. W. Bradbury, and J. Kreuter (eds.). The Blood-Brain Barrier and Drug Delivery to the CNS, Marcel Dekker, New York, 2000.Google Scholar
  7. 7.
    A. Minn, R. D. S. El-BachÁ, C. Bayol-Denizot, P. Lagrange, and F. G. Suleman. Drug metabolism in the brain: Benefits and risks. In D. J. Begley, M. W. Bradbury, and J. Kreuter (eds.) The Blood-Brain Barrier and Drug Delivery to the CNS, Marcel Dekker, New York, 2000, pp. 145-170.Google Scholar
  8. 8.
    J.-C. Olivier, L. Fenart, R. Chauvet, C. Pariat, R. Cecchelli, and W. Couet. Indirect evidence that drug brain targeting using polysorbate 80-coated polybutylcyanoacrylate nanoparticles is related to toxicity. Pharm. Res. 16:1836-1842 (1999).Google Scholar
  9. 9.
    E. I. Kalenikova, O. F. Dimittriekova, S. V. Zhukova, and V.A. Tishenko. Farmokinetica dalargina. Vopr. Med. Khim. 34:75-83 (1988).Google Scholar
  10. 10.
    P. Ramge, J. Kreuter, and B. Lemmer. Circadian phase-dependent antinociceptive reaction in mice after i. v. injection of dalargin-loaded nanoparticles determined by the hot-plate test and the tail-flick test. Chronobiol. Int. 17:767-777 (1999).Google Scholar
  11. 11.
    R. Cecchelli, B. Dehouck, L. Descamps, L. Fenart, V. BuÉe-Scherrer, C. Duhem, S. Lundquist, M. Rentfel, G. Torpier, and M. P. Dehouck. In vitro model for evaluating drug transport across the blood-brain barrier. Adv. Drug Deliv. Rev. 36:165-178 (1999).Google Scholar
  12. 12.
    P. Ramge, R. E. Unger, J. B Oltrogge, D. Zenker, D. Begley, J. Kreuter, and H. von Briesen. Polysorbate-80 coating enhances uptake of polybutylcyanoacrylate (PBCA)-nanoparticles by human and bovine primary brain capillary endothelial cells. Eur. J. Neurosci. 12:1931-1940 (2000).Google Scholar
  13. 13.
    K. R. Dorovini-Zis, R. Prameya, and P. D. Bowman. Culture and characterisation of microvascular endothelial cells derived from human brain. Lab. Invest. 64:425-436 (1991).Google Scholar
  14. 14.
    S. MÉeresse, M. P. Dehouck, P. Delorme, M. Bensaid, J. P. Tauber, C. Delbart, J. C. Fruchard, and R. Cecchelli. Bovine brain endothelial cells express tight junctions and monoamine oxidase activity in long-term culture. J. Neurochem. 53:1363-1371 (1989).Google Scholar
  15. 15.
    J. Boother and M. Sensenbrenner. Growth and cultivation of dissociated neurons and glial cells from embryonic #x03A7;ck, rat and human brain in flask cultures. Neurobiology 2:97-105 (1972).Google Scholar
  16. 16.
    A. Siflinger-Birnboim, P. J. Del Vecchio, J. A. Cooper, F. A. Blumenstock, J. N. Shepard, and A. B. Mailk. Molecular sieving characteristics of the cultured endothelial monolayer. J. Cell. Physiol. 132:111-117 (1987).Google Scholar
  17. 17.
    M.-P. Dehouck, S. MÉeresse, P. Delorme, J. C. Fruchart, and R. Cecchelli. An easier, reproducible, and mass-production method to study the blood-brain barrier in vitro. J. Neurochem. 54:1798-1801 (1990).Google Scholar
  18. 18.
    M.-P. Dehouck, P. Jolliet-Riant, F. Bree, J.-C. Fruchart, R. Cecchelli, and J.-P. Tillement. Drug transfer across the blood-brain barrier: correlation between in vitro and in vivo models. J. Neurochem. 58:1790-1797 (1992).Google Scholar
  19. 19.
    T. J. Raub, S. L. Kuentzel, and G.A Sawada. Permeability of bovine brain microvessel endothelial cells in vitro: barrier tightening by a factor released from astroglioma cells. Exp. Cell Res. 199:330-340 (1992).Google Scholar
  20. 20.
    J. Kreuter, R. N. Alyautdin, D. A. Kharkevich, and A. A. Ivanov. Passage of peptides through the blood-brain barrier with colloidal polymer particles (nanoparticles). Brain Res. 674:171-174 (1995).Google Scholar
  21. 21.
    J. Kreuter and R. N. Alyautdin. Using nanoparticles to target drugs to the central nervous system. In D. J. Begley, M. W. Bradbury, and J. Kreuter (eds.), The Blood-Brain Barrier and Drug Delivery to the CNS, Marcel Dekker, New York, 2000, pp. 205-223.Google Scholar
  22. 22.
    R. N. Alyautdin, A. Reichel, R. LÖbenberg, P. Ramge, J. Kreuter, and D. J. Begley. Interaction of poly(butylcyanoacrylate) nanoparticles with the blood-brain barrier in vivo and in vitro. J. Drug Target. 9:209-221 (2001).Google Scholar
  23. 23.
    B. Kante. G Couvreur, C. Dubois-Krack, P. De Meester, M. Guiot, M. Roland, and P. Spieser. Toxicity of polyalkylcyanoacrylate nanoparticles 1: free nanoparticles. J. Pharm. Sci. 71:786-790 (1982).Google Scholar
  24. 24.
    S. E Gelperina, A. S. Khalansky, I. N. Skidan, Z. S. Smirnova, A. I. Bobruskin, S. E. Severin, B. Turowski, F. E. Zanella, and J. Kreuter. Toxicological studies of doxorubicin bound to polysorbate 80-coated poly(butyl cyanoacrylate nanoparticles in healthy rats and rats with intracranial glioblastoma. Toxicol. Lett. 126:131-141 (2002).Google Scholar
  25. 25.
    U. Schroeder and B. A. Sabel. Nanoparticles, a drug carrier system to pass the blood-brain barrier, permit central analgesic effects of i.v. dalargin injections. Brain Res. 710:121-124 (1996).Google Scholar

Copyright information

© Plenum Publishing Corporation 2003

Authors and Affiliations

  • Jörg Kreuter
    • 1
  • Peter Ramge
    • 1
  • Valery Petrov
    • 2
  • Stefan Hamm
    • 3
  • Svetlana E. Gelperina
    • 1
    • 4
  • Britta Engelhardt
    • 3
  • Renad Alyautdin
    • 2
  • Hagen von Briesen
    • 5
  • David J. Begley
    • 6
  1. 1.Institut für Pharmazeutische TechnologieBiozentrum, J.W.Goethe-UniversitätFrankfurtGermany
  2. 2.Department of PharmacologyMoscow Medical AcademyRussia
  3. 3.Max-Planck-Institut für physiologische und klinische Forschung, W.G.Kerckhoff-InstitutBad NauheimGermany
  4. 4.Center of Molecular Diagnostics and TherapyMoscow Institute of Medical EcologyMoscowRussia
  5. 5.Georg-Speyer-HausFrankfurtGermany
  6. 6.Centre for Neuroscience Research, Guy's CampusKing's College LondonLondonUnited Kingdom

Personalised recommendations