Advertisement

Russian Microelectronics

, Volume 32, Issue 2, pp 97–104 | Cite as

NANODEV: A Nanoelectronic-Device Simulation Software System

  • I. I. Abramov
  • I. A. Goncharenko
  • S. A. Ignatenko
  • A. V. Korolev
  • E. G. Novik
  • A. I. Rogachev
Article

Abstract

The concept and structure of the NANODEV simulation software are described. NANODEV deals with nanoelectronic devices that exploit single-electron tunneling, resonant tunneling, or quantum interference. It can use both simplified and sophisticated models and enables one to evaluate a wide variety of devices and configurations. The capabilities of NANODEV are illustrated by examples.

Keywords

Simulation Software Quantum Interference Sophisticated Model Resonant Tunneling Nanoelectronic Device 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    Chen, R.H. and Likharev, K.K., Multiple-Junction Single-Electron Transistors for Digital Applications, Appl. Phys. Lett., 1998, vol. 72, pp. 61–63.Google Scholar
  2. 2.
    Wasshuber, C. and Kosina, H., A Single-Electron Device and Circuit Simulator, Superlattices Microstruct., 1997, vol. 21, no. 1, pp. 37–42.Google Scholar
  3. 3.
    Klimeck, G., Lake, R., Bowen, R.C., Frensley, W.R., and Moise, T.S., Quantum Device Simulation with a Generalized Tunneling Formula, Appl. Phys. Lett., 1995, vol. 67, pp. 2539–2541.Google Scholar
  4. 4.
    Lake, R., Klimeck, G., Bowen, R.C., and Jovanovic, D., Single and Multiband Modeling of Quantum Electron Transport through Layered Semiconductor Devices, J. Appl. Phys., 1997, vol. 81, pp. 7845–7869.Google Scholar
  5. 5.
    Abramov, I.I. and Kharitonov, V.V., Analysis of Multidimensional-Simulation Software for Silicon VLSI and ULSI Components, Elektron. Tekh., Ser. 3: Mikroelektron., 1992, issue 1, pp. 28–32.Google Scholar
  6. 6.
    Sun, J.P., Haddad, G.I., Mazumder, P., and Schulman, J.N., Resonant Tunneling Diodes: Models and Properties, Proc. IEEE, 1998, vol. 86, pp. 641–661.Google Scholar
  7. 7.
    Abramov, I.I. and Novik, E.G., Chislennoe modelirovanie metallicheskikh odnoelektronnykh tranzistorov (Numerical Simulation of Metal-Compound Single-Electron Transistors), Minsk: Bestprint, 2000.Google Scholar
  8. 8.
    Abramov, I.I., Goncharenko, I.A., Novik, E.G., and Sheremet, I.V., Simulation Software System for Single-Electron and Resonant-Tunneling Nanoelectronic Devices, Materialy 6-oi Mezhdunarodnoi Krymskoi konferentsii "SVCh-tekhnika i telekommunikatsionnye tekhnologii", KryMiKo'96 (Materials of the 6th Int. Crimean Conf. on Microwave and Telecommunication Technologies, CriMiCo'96), Sebastopol, 1996, pp. 294–298.Google Scholar
  9. 9.
    Abramov, I.I., Modelirovanie fizicheskikh protsessov v elementakh kremnievykh integral'nykh mikroskhem (Modeling Physical Processes in Silicon-IC Components), Minsk: BGU, 1999.Google Scholar
  10. 10.
    Abramov, I.I. and Novik, E.G., Classification of Single-Electron Devices, Fiz. Tekh. Poluprovodn. (St. Petersburg), 1999, vol. 33, issue 11, pp. 1388–1394.Google Scholar
  11. 11.
    Single Charge Tunneling: Coulomb Blockade Phenomena in Nanostructures, Grabert, H. and Devoret, M.H., Eds., NATO ASI Ser., Ser. B, vol. 294, New York: Plenum, 1992.Google Scholar
  12. 12.
    Abramov, I.I., Goncharenko, I.A., and Novik, E.G., On the Operating Temperature of Single-Electron Transistors, Pis'ma Zh. Tekh. Fiz., 1998, vol. 24, issue 8, pp. 16–19.Google Scholar
  13. 13.
    Abramov, I.I. and Novik, E.G., A Two-Dimensional Numerical Model of the Single-Electron Transistor, Mikroelektronika, 2000, vol. 29, no. 3, pp. 197–201.Google Scholar
  14. 14.
    Abramov, I.I. and Novik, E.G., Modeling the Single-Electron Transistor by Numerical Solution of Poisson's Equation, Pis'ma Zh. Tekh. Fiz., 2000, vol. 26, issue 16, pp. 63–67.Google Scholar
  15. 15.
    Abramov, I.I. and Novik, E.G., Characteristics of Single-Electron Transistors Based on Different Metal Compounds, Fiz. Tekh. Poluprovodn. (St. Petersburg), 2000, vol. 34, issue 8, pp. 1014–1019.Google Scholar
  16. 16.
    Abramov, I.I., Goncharenko, I.A., and Novik, E.G., Computer Simulation of Single-Electron Transistors, Izv. Vyssh. Uchebn. Zaved., Elektron., 2000, no. 2, pp. 87–94.Google Scholar
  17. 17.
    Abramov, I.I., Novik, E.G., and Ignatenko, S.A., Single-Electron Devices Based on Three Cascaded Tunnel Junctions: The Calculation of Current-Voltage Characteristics, Materialy dokladov Mezhdunarodnoi nauchnotekhnicheskoi konferentsii “Novye tekhnologii izgotovleniya mnogokristal'nykh modulei” (Proc. Int. Conf. on New Manufacture Technologies for Multichip Modules), Minsk, 2000, pp. 112–114.Google Scholar
  18. 18.
    Abramov, I.I. and Novik, E.G., Background-Charge Approximations for Single-Electron-Transistor Modeling, Fiz. Tekh. Poluprovodn. (St. Petersburg), 2001, vol. 35, issue 4, pp. 489–491.Google Scholar
  19. 19.
    Abramov, I.I., Berashevich, Yu.A., Sheremet, I.V., and Yakubovskii, I.A., Simulation Software System for Resonant-Tunneling Structures, Izv. Vyssh. Uchebn. Zaved., Radioelektron., 1999, vol. 42, no. 2, pp. 46–50.Google Scholar
  20. 20.
    Abramov, I.I., Goncharenko, I.A., Danilyuk, A.L., and Korolev, A.V., Simulation of Resonant-Tunneling Structures with the RTS-NANODEV Software System, Materialy 9-oi Mezhdunarodnoi Krymskoi mikrovolnovoi konferentsii “SVCh-tekhnika i telekommunikatsionnye tekhnologii”, KryMiKo'99 (Materials of the 9th Int. Crimean Conf. on Microwave and Telecommunication Technologies, CriMiCo'99), Sebastopol, 1999, pp. 296–299.Google Scholar
  21. 21.
    Goncharenko, I.A., Method and Software for the Calculation of the Transmission Coefficient for a Double-Barrier Resonant-Tunneling Structure, Vesn. Suvyazi, 1999, no. 1, pp. 138–140.Google Scholar
  22. 22.
    Abramov, I.I. and Goncharenko, I.A., Comparative Study of a Numerical and an Analytical Model of Resonant-Tunneling Structures, Izv. Belarus. Inzh. Akad., 1999, nos. 1(7)-2, pp. 116–118.Google Scholar
  23. 23.
    Abramov, I.I. and Goncharenko, I.A., Methods for the Approximation of Exterior-Boundary Conditions in the Modeling of Resonant-Tunneling Structures, Izv. Belarus. Inzh. Akad., 2000, nos. 1(9)-2, pp. 88–90.Google Scholar
  24. 24.
    Abramov, I.I. and Goncharenko, I.A., Combined 1D Model of the Resonant-Tunneling Diode, Materialy 11-oi Mezhdunarodnoi konferentsii “SVCh-tekhnika i telekommunikatsionnye tekhnologii”, KryMiKo'2001 (Materials of the 11th Int. Conf. on Microwave and Telecommunication Technologies, CriMiCo'2001), Sebastopol, 2001, pp. 443–444.Google Scholar
  25. 25.
    Abramov, I.I., Danilyuk, A.L., and Korolev, A.V., Nonlinear Electrical Model of the Resonant-Tunneling Diode, Izv. Vyssh. Uchebn. Zaved., Radioelektron., 2000, vol. 43, no. 3, pp. 59–63.Google Scholar
  26. 26.
    Abramov, I.I., Danilyuk, A.L., and Korolev, A.V., Steady-State and Transient Characteristics of the Resonant-Tunneling Diode Represented in Terms of a Nonlinear Electrical Model, Vestsi NAN Belarusi, Ser. Fiz.-Tekh. Navuk, 2000, no. 2, pp. 75–79.Google Scholar
  27. 27.
    Abramov, I.I., Danilyuk, A.L., and Korolev, A.V., Universal Electrical Model of Double-Barrier Structures, Vestsi NAN Belarusi, Ser. Fiz.-Tekh. Navuk, 2001, no. 1, pp. 78–81.Google Scholar
  28. 28.
    Abramov, I.I. and Korolev, A.V., Theoretical Study of Active Structures Containing Resonant-Tunneling Diodes, Zh. Tekh. Fiz., 2001, vol. 71, issue 9, pp. 128–133.Google Scholar
  29. 29.
    Abramov, I.I. and Rogachev, A.I., Frequency Characteristics of T-interference Transistors Differing in Semiconductor Material, Materialy 10-oi Mezhdunarodnoi Krymskoi mikrovolnovoi konferentsii “SVCh-tekhnika i telekommunikatsionnye tekhnologii”, KryMiKo'2000 (Materials of the 10th Int. Crimean Conf. on Microwave and Telecommunication Technologies, CriMiCo'2000), Sebastopol, 2000, pp. 421–422.Google Scholar
  30. 30.
    Abramov, I.I. and Rogachev, A.I., Electrical Characteristics of Single-Gate Quantum-Interference Transistors Differing in Semiconductor Material, Fiz. Tekh. Poluprovodn. (St. Petersburg), 2001, vol. 35, issue 11, pp. 1365–1369.Google Scholar
  31. 31.
    Abramov, I.I. and Rogachev, A.I., Wigner-Function Model of a Ballistic-Transport T-interference Transistor, Izv. Belarus. Inzh. Akad., 2001, no. 1(11)/3, pp. 74–76.Google Scholar
  32. 32.
    Miller, T.G. and Reifenberger, R., Three-Tunnel-Capacitor Model for Single-Electron Tunneling in Layered Thin Films, Phys. Rev. B, 1994, vol. 50, pp. 3342–3349.Google Scholar
  33. 33.
    Abramov, I.I., Berashevich, Yu.A., and Danilyuk, A.L., Electric-Potential Characteristics of Quantum-Interference Transistors Differing in Semiconductor Material, Zh. Tekh. Fiz., 1999, vol. 69, issue 11, pp. 130–131.Google Scholar

Copyright information

© MAIK Nauka/Interperiodica 2003

Authors and Affiliations

  • I. I. Abramov
    • 1
  • I. A. Goncharenko
    • 1
  • S. A. Ignatenko
    • 1
  • A. V. Korolev
    • 1
  • E. G. Novik
    • 1
  • A. I. Rogachev
    • 1
  1. 1.Belarussian State University of Informatics and RadioelectronicsMinskBelarus

Personalised recommendations