Existence and Structure of Extremals for One-Dimensional Nonautonomous Variational Problems

  • A. J. Zaslavski


We study the existence and structure of extremals for one-dimensional variational problems on a torus and the properties of the minimal average action as a function of the rotation number. We show that, for a generic integrand f, the minimum of the minimal average action is attained at a rational point mn−1 where n≥1 and m are integers; also, for each initial value, there exists an (f)-weakly optimal solution over an infinite horizon.

Infinite horizons weakly optimal solutions turnpike property minimal average action rotation number 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aubry, S., and Le Daeron, P. Y., The Discrete Frenkel-Kontorova Model and Its Extensions, I: Exact Results for the Ground States, Physica D, Vol. 8, pp. 381–422, 1983.Google Scholar
  2. 2.
    Moser, J., Recent Developments in the Theory of Hamilton Systems, SIAM Review, Vol. 28, pp. 459–485, 1986.Google Scholar
  3. 3.
    Moser, J., Minimal Solutions of Variational Problems on a Torus, Annales de L'Institut Henri Poincaré, Analyse Non-Lineaire, Vol. 3, pp. 229–272, 1986.Google Scholar
  4. 4.
    Zaslavski, A. J., Ground States in the Frenkel-Kontorova Model, Mathematics of the USSR, Izvestiya, Vol. 29, pp. 323–354, 1987.Google Scholar
  5. 5.
    Senn, W., Strikte Konvexitat fur Variationsprobleme auf dem n-Dimensionalen Torus, Manuscripta Mathematica, Vol. 71, pp. 45–65, 1991.Google Scholar
  6. 6.
    Leizarowitz, A., and Zaslavski, A. J., Infinite-Horizon Variational Problems with Nonconvex Integrands, SIAM Journal on Control and Optimization, Vol. 34, pp. 1099–1134, 1996.Google Scholar
  7. 7.
    Carlson, D. A., On the Existence of Sporadically Catching-Up Optimal Solutions for Infinite-Horizon Optimal Control Problems, Journal of Optimization Theory and Applications, Vol. 53, pp. 219–235, 1987.Google Scholar
  8. 8.
    Carlson, D. A., Haurie, A., and Leizarowitz, A., Infinite-Horizon Optimal Control, Springer Verlag, Berlin, Germany, 1991.Google Scholar
  9. 9.
    Leizarowitz, A., Infinite-Horizon Autonomous Systems with Unbounded Cost, Applied Mathematics and Optimization, Vol. 13, pp. 19–43, 1985.Google Scholar
  10. 10.
    Rockafellar, R. T., Convex Analysis, Princeton University Press, Princeton, New Jersey, 1970.Google Scholar
  11. 11.
    Senn, W., Differentiability Properties of the Minimal Average Action, Calculus of Variations and Partial Differential Equations, Vol. 3, pp. 343–384, 1995.Google Scholar
  12. 12.
    Aubin, J. P., and Ekeland, I., Applied Nonlinear Analysis, Wiley Interscience, New York, New York, 1984.Google Scholar
  13. 13.
    Kobayashi, S., and Nomizu, K., Foundations of Differential Geometry, Vol. 1, Interscience Publishers, New York, New York, 1963.Google Scholar
  14. 14.
    Zaslavski, A. J., The Existence and Structure of Extremals of Second-Order, Infinite-Horizon Variational Problems, Journal of Mathematical Analysis and Applications, Vol. 194, pp. 660–696, 1995.Google Scholar

Copyright information

© Plenum Publishing Corporation 1998

Authors and Affiliations

  • A. J. Zaslavski
    • 1
  1. 1.Department of MathematicsTechnion-Israel Institute of TechnologyHaifaIsrael

Personalised recommendations