Advertisement

Theoretical and Mathematical Physics

, Volume 134, Issue 3, pp 365–376 | Cite as

Perturbation Theory and the Analytic Approach in the Context of the Inclusive τ-Lepton Decay

  • O. P. Solovtsova
Article

Abstract

We perform a comparative analysis of different forms of pertubative expansions in spacelike and timelike regions. In the context of the inclusive τ-lepton decay, we compare the results obtained using the standard perturbation theory and the Shirkov–Solovtsov analytic approach, which modifies the perturbative expansions such that the new approximations reflect basic principles of the theory, such as renormalization invariance, spectrality, and causality. We show the advantages and self-consistency of the analytic approach in describing the τ-lepton decay.

quantum chromodynamics renormalization group perturbation theory τ lepton 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    N. N. Bogoliubov and D. V. Shirkov, Introduction to the Theory of Quantized Fields [in Russian], Nauka, Moscow (1986); English transl. prev. ed., Wiley, New York (1980)Google Scholar
  2. 2.
    E. C. G. Stukelberg and A. Peterman, Helv. Phys. Acta., 26, 499 (1953).Google Scholar
  3. 3.
    M. Gell-Mann and F. E. Low, Phys. Rev., 95, 1300 (1954).Google Scholar
  4. 4.
    N. N. Bogoliubov and D. V. Shirkov, Dokl. Akad. Nauk SSSR, 103, 203 (1955); JETP, 3, 57 (1956); Nuovo Cimento, 3, 845 (1956).Google Scholar
  5. 5.
    N. N. Bogolyubov, A. A. Logunov, and D. V. Shirkov, JETP, 10, 574 (1960).Google Scholar
  6. 6.
    D. V. Shirkov and I. L. Solovtsov, JINR Rapid Commun., No. 2[76]-96, 5 (1996); Phys. Rev. Lett., 79, 1209 (1997).Google Scholar
  7. 7.
    I. L. Solovtsov and D. V. Shirkov, Theor. Math. Phys., 120, 1220 (1999).Google Scholar
  8. 8.
    K. A. Milton and I. L. Solovtsov, Phys. Rev. D, 55, 5295 (1997).Google Scholar
  9. 9.
    K. A. Milton and O. P. Solovtsova, Phys. Rev. D, 57, 5402 (1998).Google Scholar
  10. 10.
    K. A. Milton, I. L. Solovtsov, and O. P. Solovtsova, Phys. Lett. B, 415, 104 (1997).Google Scholar
  11. 11.
    I. L. Solovtsov and D. V. Shirkov, Phys. Lett. B, 442, 344 (1998).Google Scholar
  12. 12.
    D. V. Shirkov, Theor. Math. Phys., 119, 438 (1998); hep-th/9810246 (1998).Google Scholar
  13. 13.
    K. A. Milton, I. L. Solovtsov, and O. P. Solovtsova, Phys. Rev. D, 60, 016001 (1999).Google Scholar
  14. 14.
    I. L. Solovtsov, Part. Nucl. Lett., 4, 10 (2000).Google Scholar
  15. 15.
    D. V. Shirkov, Theor. Math. Phys., 127, 409( 2001).Google Scholar
  16. 16.
    E. V. Shuryak and A. I. Vainshtein, Nucl. Phys. B, 199, 451 (1982).Google Scholar
  17. 17.
    V. M. Braun and A. V. Kolesnichenko, Nucl. Phys. B, 283, 723 (1987).Google Scholar
  18. 18.
    The ALEPH Collaboration, R. Barate et al., Eur. Phys. J. C, 4, 409 (1998).Google Scholar
  19. 19.
    The OPAL Collaboration, K. Ackerstaff et al., Eur. Phys. J. C, 7, 571 (1999).Google Scholar
  20. 20.
    S. H. Robertson, Nucl. Phys. B (Proc. Suppl.), 98, 67 (2001).Google Scholar
  21. 21.
    Y. S. Tsai, Phys. Rev. D, 4, 2821 (1971).Google Scholar
  22. 22.
    E. Braaten, S. Narison, and A. Pich, Nucl. Phys. B, 373, 581 (1992).Google Scholar
  23. 23.
    S. L. Adler, Phys. Rev. D, 10, 3714 (1974).Google Scholar
  24. 24.
    E. Braaten, Phys. Rev. Lett., 60, 1606 (1988); Phys. Rev. D, 39, 1458 (1989).Google Scholar
  25. 25.
    B. Schrempp and F. Schrempp, Z. Phys. C, 6, 7 (1980).Google Scholar
  26. 26.
    A. V. Radyushkin, “Optimized lambda-parameterization for the QCD running coupling constant in spacelike and timelike regions,” Preprint JINR E2–82–159, Joint Inst. Nucl. Res., Dubna (1982); JINR Rapid Commun., No. 4[78]-96, 9 (1996); hep-ph/9907228 (1999).Google Scholar
  27. 27.
    N. V. Krasnikov and A. A. Pivovarov, Phys. Lett. B, 116, 168 (1982).Google Scholar
  28. 28.
    J. D. Bjorken, “Two topics in QCD,” Preprint SLAC-PUB-5103, SLAC (1989); in: Proc. Cargese Summer Institute in Particle Physics (NATO Adv. Study Inst. Ser. B., Vol. 223, M. Levy et al., eds.), Plenum, New York (1990).Google Scholar
  29. 29.
    D. V. Shirkov, Eur. Phys. J. C, 22, 331 (2001);hep-ph/0107282 (2001).Google Scholar
  30. 30.
    K. G. Chetyrkin, Phys. Lett. B, 390, 309 (1997).Google Scholar
  31. 31.
    P. M. Stevenson, Phys. Lett. B, 100, 61 (1981); Phys. Rev. D, 23, 2916 (1981).Google Scholar
  32. 32.
    J. Chyla, A. L. Kataev, and S. G. Larin, Phys. Lett. B, 267, 269 (1991).Google Scholar
  33. 33.
    A. C. Mattingly and P. M. Stevenson, Phys. Rev. Lett., 69, 1320 (1992); Phys. Rev. D, 49, 437 (1994).Google Scholar
  34. 34.
    G. Grunberg, Phys. Lett. B, 95, 70 (1980); Phys. Rev. D, 29, 2315 (1984).Google Scholar
  35. 35.
    A. Dhar and V. Gupta, Phys. Rev. D, 29, 2822 (1884).Google Scholar
  36. 36.
    S. G. Gorishny, A. L. Kataev, S. A. Larin, and L. R. Surguladze, Phys. Rev. D, 43, 1633 (1991).Google Scholar
  37. 37.
    K. A. Milton and I. L. Solovtsov, “Infrared fixed point of the analytic running coupling,” in: Proc. 14th Intl. Seminar on High Energy Physics Problems: Relativistic Nuclear Physics and Quantum Chromodynamics (A. M. Baldin and V. V. Burov, eds.), Vol. 1, Joint Inst. Nucl. Res., Dubna (2000), p. 47.Google Scholar
  38. 38.
    J. A. M. Vermaseren, S. A. Larin, and T. van Ritbergen, Phys. Lett. B, 405, 327 (1997).Google Scholar
  39. 39.
    S. G. Gorishny, A. L. Kataev, and S. A. Larin, Phys. Lett. B, 259, 144 (1991).Google Scholar
  40. 40.
    K. A. Milton, I. L. Solovtsov, O. P. Solovtsova, and V. I. Yasnov, Eur. Phys. J. C, 14, 495 (2000).Google Scholar
  41. 41.
    K. A. Milton and I. L. Solovtsov, Phys. Rev. D, 59, 107701 (1999).Google Scholar
  42. 42.
    K. A. Milton, I. L. Solovtsov, and O. P. Solovtsova, Phys. Rev. D, 64, 016005 (2001).Google Scholar
  43. 43.
    E. Gardi, G. Grunberg, and M. Karliner, JHEP, 07, 007 (1998).Google Scholar
  44. 44.
    B. A. Magradze, Internat. J. Modern Phys. A, 15, 2715 (2000).Google Scholar
  45. 45.
    D. S. Kourashev and B. A. Magradze, “Explicit expressions for Euclidean and Minkowskian QCD observables in analytic perturbation theory,” hep-ph/0104142 (2001).Google Scholar
  46. 46.
    F. Le Diberder and A. Pich, Phys. Lett. B, 286, 147 (1992).Google Scholar
  47. 47.
    Particle Data Group, D. E. Groom et al., Eur. Phys. J. C, 15, 1 (2000).Google Scholar
  48. 48.
    B. V. Geshkenbein, B. L. Ioffe, and K. N. Zyablyuk, Phys. Rev. D, 64, 093009 (2001); hep-ph/0104048 (2001).Google Scholar
  49. 49.
    P. A. Rşczka and A. Szymacha, Z. Phys. C, 70, 125 (1996).Google Scholar
  50. 50.
    S. Peris, M. Perrottet, and E. de Rafael, JHEP, 05, 011 (1998).Google Scholar
  51. 51.
    A. N. Sissakian, I. L. Solovtsov, and O. P. Solovtsova, JETP Lett., 73, 166 (2001).Google Scholar
  52. 52.
    P. A. Rşczka, Z. Phys. C, 65, 481 (1995).Google Scholar
  53. 53.
    N. V. Krasnikov and A. A. Pivovarov, Modern Phys. Lett. A, 11, 835 (1996).Google Scholar

Copyright information

© Plenum Publishing Corporation 2003

Authors and Affiliations

  • O. P. Solovtsova
    • 1
  1. 1.Joint Institute for Nuclear ResearchDubna, Moscow OblastRussia

Personalised recommendations