Advertisement

Journal of Theoretical Probability

, Volume 10, Issue 2, pp 279–286 | Cite as

Murray Rosenblatt: His Contributions to Probability and Statistics

  • T. C. Sun
Article

Keywords

Stochastic Process Probability Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    Bradley, R. (1985). Basic properties of strong mixing conditions. In Eberlein, E., and Taqqu, M. (eds.), Dependence in Probability and Statistics, Birkhauser, pp. 165–192.Google Scholar
  2. 2.
    Breidt, F., Davis, R., Lii, K. S., and Rosenblatt, M. (1991). Maximum likelihood estimation for noncausal autoregressive processes, J. Multiv. Anal. 36, 175–198.Google Scholar
  3. 3.
    Breuer, P., and Major, P. (1983). Central limit theorems for nonlinear functions of a Gaussian fields, J. Multiv. Anal. 13, 425–461.Google Scholar
  4. 4.
    Brillinger, D. R., and Rosenblatt, M. (1967a). Asymptotic theory of estimates of kth order spectra. In Spectral Analysis of Time Series, John Wiley, pp. 153–188.Google Scholar
  5. 5.
    Brillinger, D. R., and Rosenblatt, M. (1967b). Computation and interpretation of kth order spectra. In Spectral Analysis of Time Series, John Wiley, pp. 189–232.Google Scholar
  6. 6.
    Dobrushin, R. L., and Major, P. (1979). Noncentral limit theorems for nonlinear functions of Gaussian fields, Z. Wahrsch. verb. Geb. 50, 27–52.Google Scholar
  7. 7.
    Gasser, T., and Rosenblatt, M. (1979). Smoothing Techniques for Curve Estimation, Lecture Notes in Mathematics, Vol. 757, Springer-Verlag.Google Scholar
  8. 8.
    Giraitis, L., and Surgalis, D. (1985). Multivariate Appell polynomial and the central limit theorem. In Eberlein, E., and Taqqu, M. (eds.), Dependence in Probability and Statistics, Birkhauser, pp. 21–71.Google Scholar
  9. 9.
    Heble, M., and Rosenblatt, M. (1963). Idempotent measures on a compact topological semigroup, Proc. Amer. Math. Soc. 14, 177–184.Google Scholar
  10. 10.
    Ho, H. C., and Sun, T. C. (1987). A central limit theorem for noninstantaneous filters of a stationary Gaussian process, J. Multiv. Anal. 22, 144–155.Google Scholar
  11. 11.
    Hognas, G., and Mukherjea, A. (1995). Probability Measures on Semigroups, Plenum Press, New York.Google Scholar
  12. 12.
    Lii, K. S., and Rosenblatt, M. (1975). Asymptotic behavior of a spline estimate of a density, Comp. Math. Appl. 1, 223–235.Google Scholar
  13. 13.
    Lii, K. S., and Rosenblatt, M. (1982). Deconvolution and estimation of transfer function phase and coefficients for nonGaussian linear processes, Ann. Stat. 10, 1195–1208.Google Scholar
  14. 14.
    Major, P. (1981). Multiple Wiener-Ito Integrals, Lecture Notes in Mathematics, Vol. 849, Springer-Verlag.Google Scholar
  15. 15.
    Mukherjea, A., and Tserpes, N. A. (1976). Measures on Topological Semigroups, Lecture Notes in Mathematics, Vol. 547, Springer-Verlag.Google Scholar
  16. 16.
    Mukherjea, A., and Tserpes, N. A. (1971). Idempotent measures on locally compact semigroups, Proc. Amer. Math. Soc. 29, 143–150.Google Scholar
  17. 17.
    Parzen, E. (1962). On the estimation of a probability density function and the mode, Ann. Math. Stat. 33, 1065–1076.Google Scholar
  18. 18.
    Peligrad, M. (1985). Recent advances in the central limit theorems and its weak invariance principle for mixing sequences of random variables. In Eberlein, E., and Taqqu, M. (eds.), Dependence in Probability and Statistics, Birkhauser, pp. 165–192.Google Scholar
  19. 19.
    Rice, J., and Rosenblatt, M. (1983). Smoothing splines, regression, derivations and deconvolutions, Ann. Stat. 11, 141–156.Google Scholar
  20. 20.
    Rosenblatt, M. (1956a). A central limit theorem and a strong mixing condition, Proc. Nat. Acad. Sci. 42(1), 43–47.Google Scholar
  21. 21.
    Rosenblatt, M. (1956b). Remarks on some nonparametric estimates of a density function, Ann. Math. Stat. 27, 832–837.Google Scholar
  22. 22.
    Rosenblatt, M. (1960a). Independence and dependence. Fourth Berkeley Symposium on Mathematical Statistics and Probability, I, 431–443.Google Scholar
  23. 23.
    Rosenblatt, M. (1960b). Limits of convolutions of measures on a compact topological semigroup, J. Math. Mech. 9, 293–306.Google Scholar
  24. 24.
    Rosenblatt, M. (1962). Asymptotic behavior of eigenvalues of Toeplitz forms, J. Math. Mech. 11, 941–950.Google Scholar
  25. 25.
    Rosenblatt, M. (1965). Products of independent identically distributed stochastic matrices, J. Math. Anal. Appl. 11, 1–10.Google Scholar
  26. 26.
    Rosenblatt, M. (1967). A strong mixing condition and a central limit theorem on compact groups, J. Math. Mech. 2, 189–198.Google Scholar
  27. 27.
    Rosenblatt, M. (1971). Curve estimates, Ann. Math. Stat. 42, 1815–1842.Google Scholar
  28. 28.
    Rosenblatt, M. (1980). Some limit theorems for partial sums of stationary sequences, Multiv. Anal. 5, 239–248.Google Scholar
  29. 29.
    Rosenblatt, M. (1984a). Asymptotic normality, strong mixing and spectral density estimates, Ann. Prob. 12, 1167–1180.Google Scholar
  30. 30.
    Rosenblatt, M. (1984b). A two-dimensional smoothing spline and a regression problem. In Revesz, P. (ed.), Limit Theorems in Probability and Statistics, Vol. II, pp. 915–931.Google Scholar
  31. 31.
    Rosenblatt, M. (1985). Stationary Sequences and Random Fields, Birkhauser.Google Scholar
  32. 32.
    Rosenblatt, M. (1987). Remarks on limit theorems for nonlinear functions of Gaussian sequences, Prob. Th. Rel. Fields 75, 1–10.Google Scholar
  33. 33.
    Rosenblatt, M., and Van Ness, J. (1965). Estimation of bispectra, Ann. Math. Stat. 36, 1120–1136.Google Scholar
  34. 34.
    Sun, T. C. (1963). A central limit theorem for nonlinear functions of a normal stationary process, J. Math. Mech. 12, 945–978.Google Scholar
  35. 35.
    Sun, T. C. (1965). Some further results on central limit theorems for nonlinear functions of a normal stationary process, J. Math. Mech. 14, 71–85.Google Scholar
  36. 36.
    Taqqu, M. (1975). Weak convergence to fractional Brownian motion and to Rosenblatt processes, Z. Wahrsch. verb. Geb. 31, 287–302.Google Scholar
  37. 37.
    Taqqu, M. (1979). Convergence of integrated processes of arbitrary Hermite rank, Z. Wahrsch. verb. Geb. 50, 53–83.Google Scholar
  38. 38.
    Terrin, N., and Taqqu, M. (1990). A noncentral limit theorem for quadratic forms of Gaussian stationary sequences, J. Th. Prob. 3, 449–475.Google Scholar

Copyright information

© Plenum Publishing Corporation 1997

Authors and Affiliations

  • T. C. Sun
    • 1
  1. 1.Wayne State UniversityDetroit

Personalised recommendations