Advertisement

Journal of Low Temperature Physics

, Volume 110, Issue 1–2, pp 23–37 | Cite as

Baryon Asymmetry of Universe: View from Superfluid 3He

  • G.E. Volovik
Article

Abstract

The origin of the excess of matter over antimatter in our Universe remains one of the fundamental problems. Dynamical baryogenesis in the process of the broken symmetry electroweak transition in the expanding Universe is the widely discussed model where the baryonic asymmetry is induced by the quantum chiral anomaly. We discuss the modelling of this phenomenon in superfluid 3 He and superconductors where the chiral anomaly is realized in the presence of quantized vortex, which introduces nodes into the energy spectrum of the fermionic quasiparticles. The spectral flow of fermions through the nodes during the vortex motion leads to the creation of fermionic charge from the superfluid vacuum and to transfer of the superfluid linear momentum into the heat bath, thus producing an extra force on the vortex, which in some cases compensates the Magnus force. This spectral-flow force was calculated 20 years ago by Kopnin and Kravtsov for s-wave superconductors, but only recently was it measured in a broad temperature range in Manchester experiments on rotating superfluid 3 He. The ”momentogenesis” observed in 3 He is analogous to the dynamical production of baryons by cosmic strings. Some other possible scenaria of baryogenesis related to superfluid 3 He are discussed.

Keywords

Vortex Cosmic String Linear Momentum Heat Bath Vortex Motion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    G. Volovik, T. Vachaspati, Int.J.Mod.Phys.B 10,471(1996).Google Scholar
  2. 2.
    S. Adler, Phys.Rev.177,2496(1969).Google Scholar
  3. 3.
    J.S. Bell, R. Jackiw, Nuovo Cim.A 60,47(1969).Google Scholar
  4. 4.
    A.D. Dolgov, Phys.Rep. 222, 310(1992).Google Scholar
  5. 5.
    A. Vilenkin, E.P.S. Shellard,Cosmic Strings and Other Topological Defects,(Cambridge University Press,1994).Google Scholar
  6. 6.
    M.B. Hindmarsh and T.W.B. Kibble,Phys.Rep.58,477(1995).Google Scholar
  7. 7.
    N. Turok,inFormation and Interactions of the Topoogical Defects,eds.A.C. Davis and R.Brandenberger,Plenum Press, New York and London,1995.Google Scholar
  8. 8.
    T. Vachaspati, G.B. Field,Phys.Rev.Lett.73,373(1994);74, Errata (1995).Google Scholar
  9. 9.
    J. Garriga and T. Vachaspati,Nucl.Phys. B438,161(1995).Google Scholar
  10. 10.
    G. Volovik,Exotic Properties of Superfluid 3He,(World Scientific, Singapore,1992).Google Scholar
  11. 11.
    G.E. Volovik,JETP 75,990(1992).Google Scholar
  12. 12.
    N.B. Kopnin,Phys.Rev.B 47,14354(1993).Google Scholar
  13. 13.
    E.B. Sonin,Phys.Rev.B 55,485(1997).Google Scholar
  14. 14.
    T.D.C. Bevan, A.J. Manninen, J.B. Cook, et al, Nature 386,689(1997)Google Scholar
  15. 15.
    T.D.C. Bevan, A.J. Manninen, J.B. Cook, et al,to be published.Google Scholar
  16. 16.
    C. Caroli,et al,Phys.Lett.9(1964)307.Google Scholar
  17. 17.
    G.E. Volovik,ZhETF104,3070(1993)[JETP 77,435 (1993)].Google Scholar
  18. 18.
    M. Stone,Phys.Rev.B 54,13222(1996);cond-mat/9708017.Google Scholar
  19. 19.
    N.B. Kopnin, G.E. Volovik, and U. Parts,Europhys.Lett. 32,651(1995). Google Scholar
  20. 20.
    G.E. Volovik and V.P. Mineev,JETP56,579(1982).Google Scholar
  21. 21.
    N.B. Kopnin, V.E. Kravtsov,ZhETF,71, 1644(1976);[JETP,44,861 (1976)].Google Scholar
  22. 22.
    N.B. Kopnin and G.E. Volovik,Phys.Rev.Lett.79,1377(1997).Google Scholar
  23. 23.
    N.B. Kopnin and G.E.Volovik,cond-mat/9706082.Google Scholar
  24. 24.
    T. Jacobson and G.E. Volovik, to be published.Google Scholar
  25. 25.
    M. Rasetti and T. Regge,PhysicaA 80,217(1975).Google Scholar
  26. 26.
    G.E. Volovik,Pis’ma ZhETF15,116(1972)[JETP Lett.15,81 (1972)].Google Scholar
  27. 27.
    S. Yip,Phys.Rev.B 35,8733(1987).Google Scholar
  28. 28.
    N. Schopohl and D. Waxman,Phys.Rev.Lett. 63, 1696(1989).Google Scholar
  29. 29.
    D. Vollhardt, P.and P. Wolfle The superfluid phases of helium 3,Taylor and Francis, London-New York -Philadelphia,1990.Google Scholar
  30. 30.
    Yu.M. Bunkov, inProgress in Low Temperature Physics,ed.W. Halperin,El-sevier,14,69(1995).Google Scholar
  31. 31.
    M. Joyce and M. Shaposhnikov,Phys.Rev.Lett.,79,1193(1997).Google Scholar
  32. 32.
    V.M.H. Ruutu, J. Kopu, M. Krusius, U. Parts, B. Plaais, E.V. Thuneberg, and W. Xu,”Critical Velocity in Rotating Superfluid 3He-A”,preprint LTL-E97024 (http://boojum.hut.fi/abstracts/lowtemp/LTL-E97024.html),submit-ted to Phys.Rev.Lett.Google Scholar

Copyright information

© Plenum Publishing Corporation 1998

Authors and Affiliations

  • G.E. Volovik
    • 1
  1. 1.Low Temperature LaboratoryHelsinki University of TechnologyFinland.

Personalised recommendations