Cellular and Molecular Neurobiology

, Volume 23, Issue 1, pp 93–100

Enantiomer Effects of Huperzine A on the Aryl Acylamidase Activity of Human Cholinesterases

  • Sultan Darvesh
  • Ryan Walsh
  • Earl Martin


1. Acetylcholinesterase (AChE, EC and butyrylcholinesterase (BuChE, EC are serine hydrolase enzymes that catalyze the hydrolysis of acetylcholine.

2. (−) Huperzine A is an inhibitor of AChE and is being considered for the treatment of Alzheimer's disease.

3. In addition to esterase activity, AChE and BuChE have intrinsic aryl acylamidase activity.

4. The function of aryl acylamidase is unknown but has been speculated to be important in Alzheimer pathology.

5. Kinetic effects of (−) huperzine A and ( ±)$ huperzine A on the aryl acylamidase activity of human cholinesterases were examined.

6. (−) Huperzine A inhibited the aryl acylamidase activities of both AChE and BuChE.

7. (±) Huperzine A inhibited this function in AChE but stimulated BuChE aryl acylamidase suggesting that the (+) enantiomer is a powerful activator of this enzyme activity.

8. The two huperzine enantiomers may prove to be useful tools to examine the function of aryl acylamidase activity, including its role in Alzheimer pathology.

Alzheimer acetylcholinesterase aryl acylamidase butyrylcholinesterase enzyme kinetics huperzine A 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ariel, N., Ordentlich, A., Barak, D., Bino, T., Velan, B., and Shafferman, A. (1998). The ‘aromatic patch’ of three proximal residues in the human acetylcholinesterase active centre allows for versatile interaction modes with inhibitors. Biochem. J. 335:95–102.Google Scholar
  2. Ashani, Y., Grunwald, J., Kronman, C., Velan, B., and Shafferman, A. (1994). Role of tyrosine 337 in the binding of huperzine A to the active site of human acetylcholinesterase. Mol. Pharmacol. 45:555–560.Google Scholar
  3. Ashani, Y., Peggins, J. O., III, and Doctor, B. P. (1992). Mechanism of inhibition of cholinesterases by huperzine A. Biochem. Biophys. Res. Commun. 184:719–726.Google Scholar
  4. Ayer, W. A., Browne, L. M., Orszanska, H., Valenta, Z., and Liu, J.-S. (1989). Alkaloids of Lycopodium selago. On the identity of selagine with huperzine A and the structure of a related alkaloid. Can. J. Chem. 67:1538–1540.Google Scholar
  5. Bai, D. L., Tang, X. C., and He, X. C. (2000). Huperzine A, a potential therapeutic agent for treatment of Alzheimer's disease. Curr. Med. Chem. 7:355–374.Google Scholar
  6. Ballard, C. G. (2002). Advances in the treatment of Alzheimer's disease: Benefits of dual cholinesterase inhibition. Eur. Neurol. 47:64–70.Google Scholar
  7. Bartus, R.T. (2000). On neurodegenerative diseases, models, and treatment strategies: Lessons learned and lessons forgotten a generation following the cholinergic hypothesis. Exp. Neurol. 163:495–529.Google Scholar
  8. Bartus, R. T., Dean, R. L. I., Beer, B., and Lippa, A. S. (1982). The cholinergic hypothesis of geriatric memory dysfunction. Science 217:408–417.Google Scholar
  9. Costagli, C., and Galli, A. (1998). Inhibition of cholinesterase-associated aryl acylamidase activity by anticholinesterase agents: Focus on drugs potentially effective in Alzheimer's disease. Biochem. Pharmacol. 55:1733–1737.Google Scholar
  10. Coyle, J. T., Price, D. L., and DeLong, M. R. (1983). Alzheimer's disease: A disorder of cortical cholinergic innervation. Science 219:1184–1190.Google Scholar
  11. Darvesh, S., Kumar, R., Roberts, S., Walsh, R., and Martin, E. (2001). Butyrylcholinesterase-mediated enhancement of the enzymatic activity of trypsin. Cell. Mol. Neurobiol. 21:285–289.Google Scholar
  12. Darvesh, S., Walsh, R., and Martin, E. (2002). Enantiomer-specific inhibition of cholinesterases by huperzine A: 8th International Conference on Alzheimer's disease and related disorders in Stockholm, Sweden. Neurobiol. Aging 23:S113.Google Scholar
  13. Ellman, G. L., Courtney, K. D., Andres, V. J., and Featherstone, R. M. (1961). A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 7:88–95.Google Scholar
  14. Francis, P. T., Palmer, A. M., Snape, M., and Wilcock, G. K. (1999). The cholinergic hypothesis of Alzheimer's disease: A review of progress. J. Neurol. Neurosurg. Psychiatry 66:137–147Google Scholar
  15. Fujimoto, D. (1976). Serotonin-sensitive aryl acylamidase activity of acetylcholinesterase. FEBS Lett. 71:121–123.Google Scholar
  16. George, S. T., and Balasubramanian, A. S. (1982). The aryl acylamidases and their relationship to cholinesterases in human serum, erythrocyte and liver. Eur. J. Biochem. 121%:177–186.Google Scholar
  17. Giacobini, E. (2000). Cholinesterase inhibitors: From the Calabar bean to Alzheimer therapy. In Giacobini, E. (ed.), Cholinesterases and Cholinesterase Inhibitors, Martin Dunitz, London, pp. 181–226.Google Scholar
  18. Greig, N. H., Utsuki, T., Yu, Q., Zhu, X., Holloway, H. W., Perry, T., Lee, B., Ingram, D. K., and Lahiri, D. K. (2001). A new therapeutic target in Alzheimer's disease: Attention to butyrylcholinesterase. Curr. Med. Res. Opin. 17:159–165.Google Scholar
  19. Grutzendler, J., and Morris, J. C. (2001). Cholinesterase inhibitors for Alzheimer's disease. Drugs 61:41–52.Google Scholar
  20. Guillozet, A. L., Smiley, J. F., Mash, D. C., and Mesulam, M. M. (1997). Butyrylcholinesterase in the life cycle of amyloid plaques. Ann. Neurol. 42:909–918.Google Scholar
  21. Krall, W. J., Sramek, J. J., and Cutler, N. R. (1999). Cholinesterase inhibitors: A therapeutic strategy for Alzheimer disease. Ann. Pharmacother. 33:441–450.Google Scholar
  22. Liu, J. S., Zhu, Y. L., Yu, C. M., Zhou, Y. Z., Han, Y. Y., Wu, F. W., and Qi, B. F. (1986). The structures of huperzine A and B, two new alkaloids exhibiting anticholinesterase activity. Can. J. Chem. 64%:837–841.Google Scholar
  23. McKinney, M., Miller, J. H., Yamada, F., Tuckmantel, W., and Kozikowski, A. P. (1991). Potencies and stereoselectivities of enantiomers of huperzine A for inhibition of rat cortical acetylcholinesterase. Eur. J. Pharmacol. 203:303–305.Google Scholar
  24. Mesulam, M. M., and Geula, C. (1994). Butyrylcholinesterase reactivity differentiates the amyloid plaques of aging from those of dementia. Ann. Neurol. 36:722–727.Google Scholar
  25. Op Den Velde, W., and Stam, F. C. (1976). Some cerebral proteins and enzyme systems in Alzheimer's presenile and senile dementia. J. Am. Geriatr. Soc. 24:12–16.Google Scholar
  26. Perry, E. K., Perry, R. H., Blessed, G., and Tomlinson, B. E. (1978). Changes in brain cholinesterases in senile dementia of the Alzheimer type. Neuropathol. Appl. Neurobiol. 4:273–277.Google Scholar
  27. Saxena, A., Redman, A. M., Jiang, X., Lockridge, O., and Doctor, B. P. (1997). Differences in active site gorge dimensions of cholinesterases revealed by binding of inhibitors to human butyrylcholinesterase. Biochemistry 36:14642–14651.Google Scholar
  28. Silver, A. (1974). The Biology of Cholinesterases, Elsevier, Amsterdam.Google Scholar
  29. Valenta, Z., Yoshimura, H., Rogers, E. F., Ternbah, M., and Wiesner, K. (1960). The structure of selagine. Tetrahedron Lett. 10%:26–33.Google Scholar
  30. Wang, Y. E., Yue, D. X., and Tang, X. (1986). Anti-cholinesterase activity of huperzine A. Acta Pharmachol. Sinica 7:110–113.Google Scholar
  31. Yoshimura, H., Valenta, Z., and Wiesner, K. (1960). A rigorous proof of the selagine structure. Tetrahedron Lett. 12:14–17.Google Scholar

Copyright information

© Plenum Publishing Corporation 2003

Authors and Affiliations

  • Sultan Darvesh
    • 1
    • 2
    • 3
  • Ryan Walsh
    • 2
  • Earl Martin
    • 3
  1. 1.Department of Medicine (Neurology and Geriatric Medicine)Dalhousie UniversityHalifaxCanada
  2. 2.Department of Anatomy and NeurobiologyDalhousie UniversityHalifaxCanada
  3. 3.Department of ChemistryMount Saint Vincent UniversityHalifaxCanada

Personalised recommendations