Ecotoxicology

, Volume 12, Issue 1–4, pp 69–81

Common Loon Eggs as Indicators of Methylmercury Availability in North America

  • D.C. Evers
  • K.M. Taylor
  • A. Major
  • R.J. Taylor
  • R.H. Poppenga
  • A.M. Scheuhammer
Article

Abstract

Increased anthropogenic mercury (Hg) deposition since pre-industrial times, and subsequent transformation of inorganic Hg to methylmercury (MeHg) in aquatic environments, has created areas in North America where Hg poses a relatively high risk to wildlife, especially long-lived, piscivorous species. From 1995 to 2001, we opportunistically collected 577 eggs abandoned by Common Loons from eight states. Egg-Hg concentrations ranged from 0.07 to 4.42 µg/g (ww) or 0.10 to 19.40 µg/g (dw). Mercury was higher in eastern than in western North America. Female blood-Hg concentrations strongly correlated with those of eggs from the same territory even though the mean intraclutch Hg difference was 25%. In New England, egg volume declined significantly as egg-Hg concentrations increased. Fertility was not related to egg-Hg concentrations. Based on existing literature and this study's findings, egg-Hg risk levels were established and applied to our US data set and an existing Canadian data set. Regionally, we found the greatest risk levels in northeastern North America. With few exceptions, loon eggs are suitable indicators of methylmercury availability on lakes with territorial pairs.

common loon mercury indicator exposure effects 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barr, J.F. (1986). Population dynamics of the common loon (Gavia immer) associated with mercury-contaminated waters in northwestern Ontario. Can. Wildl. Serv. Occas. Pap. 56. Ottawa, Ontario, Canada.Google Scholar
  2. Barr, J.F. (1996). Aspects of common loon (Gavia immer) feeding biology on its breeding ground. Hydrobiologia 32, 119-44.Google Scholar
  3. Bearhop, S., Rutxon, G.D. and Furness, R.W. (2000). Dynamics of mercury in blood and feathers of great skuas. Environ. Toxicol. Chem. 19, 1638-43.Google Scholar
  4. Becker, P.H and (1992). Egg mercury levels decline with the laying sequence in Charadriiformes. Bull. Environ. Contam. Toxicol. 48, 762-7.Google Scholar
  5. Becker, P.H. and Sperveslage, H. (1989). Organochlorines and heavy metals in herring gull (Larus argentatus) eggs and chicks from the same clutch. Bull. Environ. Contam. Toxicol. 42, 721-7.Google Scholar
  6. Belant, J.L. and Anderson, R.K. (1990). Environmental contaminants in common loons from northern Wisconsin. Passenger Pigeon. 52, 306-10.Google Scholar
  7. Bischoff, K., Pichner, J., Braselton, W.E., Counard, C., Evers, D.C. and Edwards, W.C. (2002). Mercury and Selenium Concentrations in livers and eggs of common loons (Gavia immer) from Minnesota. Arch. Environ. Contam. Toxicol. 42, 71-6.Google Scholar
  8. Blums, P., Mednis, A. and Clark, R.G. (1997). Effect of incubation body mass on reproductive success and survival of two European diving ducks: a test of the nutrient limitation hypothesis. Condor. 99, 916-25.Google Scholar
  9. Braune, B.M., Donaldson, G.M. and Hobson, K.A. (2001). Contaminant residues in seabird eggs from the Canadian Arctic. Part 1. Temporal trends 1975–1998. Environ. Pollut. 114, 39-54.Google Scholar
  10. Braune, B.M. and Gaskin, D.E. (1987). Mercury levels in Bonaparte's gulls (Larus philadelphia) during autumn molt in the Quoddy Region, New Brunswick, Canada. Arch. Environ. Contam. Toxicol. 16, 539-49.Google Scholar
  11. Burger, J. (1993). Metals in avian feathers: bioindicators of environmental pollution. Rev. Environ. Toxicol. 5, 203-311.Google Scholar
  12. Burgess, N.M., Evers, J.D. and Kaplan, J.D. (1998a). Mercury levels in the blood of common loons breeding in the Maritimes and their prey. In Mercury in Atlantic Canada: A Progress Report, Environment Canada, pp. 96-100. New Brunswick, Canada: Sackville.Google Scholar
  13. Burgess, N.M., Evers, D.C., Kaplan, J.D., Duggan, M. and Kerekes, J.J. (1998b). Mercury and reproductive success of Common Loons breeding in the Maritimes. In Mercury in Atlantic Canada: A Progress Report. Environment Canada, pp. 104-109. Sackville, Canada: New Brunswick.Google Scholar
  14. Chen, C.Y., Stemberger, R.S., Klaue, B., Blum, J.D., Pickhardt, P.C. and Folt, C.L. (2000). Accumulation of heavy metals in food web components across a gradient of lakes. Limnol. Oceanogr 45, 1525-36.Google Scholar
  15. Crewther, W.G., Fraser, R.D.B., Lennox, F.G. and Findley, H. (1965). The chemistry of keratins. In C.B. Anifinsen, M.L. Anson, J.T. Edsoll and F.M. Richards (eds) Advances in Protein Chemistry, pp. 191-303. New York, USA: Academic Press.Google Scholar
  16. Custer, T.W., Pendleton, G. and Ohlendorf, J.M. (1990). Within-and among-clutch variation of organochlorine residues in eggs of black-crowned night-herons. Environ. Monitor. Assess. 15, 83-9.Google Scholar
  17. Cuvin-Aralar, M.L. and Furness, R.W. (1991). Mercury and selenium interaction: a review. Ecotoxicol. Environ. Saf. 21, 348-64.Google Scholar
  18. Dhar, A.K., Pokras, M.A., Garcia, D.K., Evers, D.C., Gordon, Z.J. and Alcivar-Warren, A. (1997). Analysis of genetic diversity in common loon Gavia immer using RAPD and mitochondrial RFLP techniques. Mol. Ecol. 1997(6), 581-6.Google Scholar
  19. Evers, D.C. (1994). Activity budgets of a marked common loon (Gavia immer) nesting population. Hydrobiologia. 279/280, 415-20.Google Scholar
  20. Evers, D.C. (2001). Common loon population studies: continental mercury patterns and breeding territory philopatry. Ph.D. Dissertation, Univ. Minn., St. Paul MN, USA.Google Scholar
  21. Evers, D.C., Kaplan, J.D., Meyer, M.W., Reaman, P.S., Braselton, W.E., Major, A., Burgess, N. and Scheuhammer, A.M. (1998). Geographic trend in mercury measured in common loon feathers and blood. Environ. Toxicol. Chem. 17, 173-83.Google Scholar
  22. Evers, D.C., Lane, O.P., De Sorbo, C. and Savoy, L. (2002). Assessing the impacts of methylmercury on piscivorous wildlife using a wildlife criterion value based on the common loon, 1998–2001. Report BRI2002-08 submitted to the Maine Dept. Environ. Protection. Falmouth ME, USA: BioDiversity Research Inst.Google Scholar
  23. Fevold, B.M., Meyer, M.W., Rasmussen, P.W. and Temple, S.A. (2003). Bioaccumulation patterns and temporal trends of mercury exposure in Wisconsin common loons. Ecotoxicology. 12(1–4), 83-93.Google Scholar
  24. Fimreite, N. (1971). Effects of dietary methylmercury on ring-necked pheasants with special reference to reproduction. Can. Wildl. Serv. Occas. Pap. No. 9. Ottawa Ontario, Canada.Google Scholar
  25. Fimreite, N. (1974). Mercury contamination of aquatic birds in northwestern Ontario. J. Wildl. Manage. 38, 120-31.Google Scholar
  26. Finley, M.T. and Stendell, R.C. (1978). Survival and reproductive success of black ducks fed methylmercury. Environ. Pollut. 16, 51-64.Google Scholar
  27. Fox, G.A., Yonge, K.S. and Sealy, S.G. (1980). Breeding performance, pollutant burden and eggshell thinning in common loons Gavia immer nesting on a boreal forest lake. Ornis Scandinavica 11, 243-8.Google Scholar
  28. Frank, R., Lumsden, H., Barr, J.F. and Braun, H.E. (1983). Residues of organochlorine insecticides, industrial chemicals, and mercury in eggs and in tissues from healthy and emaciated common loons, Ontario, Canada, 1968–1980. Arch. Environ. Contam. Toxicol. 12, 641-54.Google Scholar
  29. Gilbertson, M. (1974). Seasonal changes in organochlorine compounds and mercury in common terns of Hamilton Harbour, Ontario. Bull. Environ. Toxicol. 12, 726-32.Google Scholar
  30. Gostomski, T.J. and Evers, D.C. (1998). Time-activity budget for common loons, Gavia immer, nesting on Lake Superior. Can. Field-Nat. 112, 191-7.Google Scholar
  31. Hatch, W.R. and Ott, W.L. (1968). Determination of submicrogram quantities of mercury by atomic absorption spectrophotometry. Anal. Chem. 40, 2085-7.Google Scholar
  32. Heinz, G.H. (1974). Effects of low dietary levels of methylmercury on mallard reproduction. Bull. Environ. Contam. Toxicol. 11, 386-92.Google Scholar
  33. Heinz, G.H. (1976a). Methylmercury: second-year feeding effects on mallard reproduction and duckling behavior. J. Wildl. Manag. 40, 82-90.Google Scholar
  34. Heinz, G.H. (1976b). Methylmercury: Second-generation reproductive and behavior effects on mallard ducks. J. Wildl. Manag. 40, 710-5.Google Scholar
  35. Heinz, G.H. (1979). Methylmercury: Reproduction and behavioral effects on three generations of mallard ducks. J. Wildl. Manag. 43, 394-400.Google Scholar
  36. Henny, C.J. and Herron, G.B. (1989). DDE, selenium, mercury and white-faced ibis reproduction at Carson Lake, Nevada. J. Wildl. Manag. 53, 1032-45.Google Scholar
  37. Holmquist, C.L. (1990). Trends in environmental contaminants in common loon eggs from New York Adirondacks and New Hampshire. Concord, NH, USA: USFWS Unpubl. Rept.Google Scholar
  38. Hoyt, D.F. (1979). Practical methods of estimating volume and fresh weight of bird eggs. Auk 96, 73-7.Google Scholar
  39. Hughes, K.D., Ewins, P.J. and Clark, K.E. (1997). A comparison of mercury levels in feathers and eggs of osprey (Pandion haliaetus) in the North American Great Lakes. Arch. Environ. Contam. Toxicol. 33, 441-52.Google Scholar
  40. Kambamamonli-Dimou, A., Kamarianos, A. and Kilikidis, S. (1991). Transfer of methylmercury to hens' eggs after oral administration. Bull. Environ. Contan. Toxicol. 46, 128-33.Google Scholar
  41. Lewis, S.A., Becker, P.H. and Furness, R.W. (1993). Mercury levels in eggs, tissues, and feathers of herring gulls Larus argentatus from the German Wadden Sea Coast. Envrion. Pollut. 51, 293-9.Google Scholar
  42. Lockhart, W.L., Wilkinson, P., Billeck, B.N., Hunt, R.V., Wagemann, R. and Brunskill, G.J. (1995). Current and historical inputs of mercury to high-latitude lakes in Canada and to Hudson Bay. Water Air Soil Pollut. 80, 603-10.Google Scholar
  43. Lucotte, M., Schetagne, R., Therien, N., Langlois, C. and Tremblay, A. (eds) (1999). Mercury in the Biogeochemical Cycle. NY, USA: Springer Verlag.Google Scholar
  44. March, B.E., Soong, R., Blinski, E. and Jonas, R.E.E. (1974). Effects on chickens of chronic exposure to mercury at low levels through dietary fish meal. Poultry Sci. 53, 2175-81.Google Scholar
  45. McIntyre, J.W. (1988). The Common Loon: Spirit of the Northern Lakes. Minneapolis, MN, USA: Univ. Minn. Press.Google Scholar
  46. McIntyre, J.W. and Evers, D.C. (eds) (2000). Loons: Old History and New Findings. Proc. of a Symposium from the 1997 Meeting, American Ornnithologists' Union. Holderness, NH, USA: N. Am. Loon Fund.Google Scholar
  47. McIntyre, J.W., Hickey, J.T., Karwowski, K, Holmquist, C.L. and Carr, K. (1993). Toxic chemicals and common loons in New York and New Hampshire, 1978–1986. In L. Morse, S. Stockwell and M. Pokras (eds) The Loon and its Ecosystem: Status, Management, and Environmental Concerns, pp. 73-91. Concord, NH, USA: US Fish Wildl. Serv.Google Scholar
  48. Meyer, M.W., Evers, D.C., Hartigan, J.J. and Rasmussen, P.S. (1998). Patters of common loon (Gavia immer) mercury exposure, reproduction, and survival in Wisconsin, USA. Environ. Toxicol. Chem. 17, 184-90.Google Scholar
  49. Morera, M., Sanpera, C., Crespo, S., Jover, L. and Ruiz, X. (1997). Inter-and intra-clutch variability in heavy metals and selenium levels in Audouin's gull eggs from the Ebro Delta, Spain. Arch. Environ. Contam. Toxicol. 33, 71-5.Google Scholar
  50. NESCAUM (1998). Northeast States and Eastern Canadian Provinces: Mercury Study: a Framework for Action. Boston, MA, USA: NESCAUM.Google Scholar
  51. Nocera, J. and Taylor, P. (1998). In situ behavioral response of common loons associated with elevated mercury exposure. Conserv. Ecol. 2, 10.Google Scholar
  52. Parkhurst, D.F. (1998). Arithmetic versus geometric means for environmental concentration data. Environ. Sci. Technol. 32, 92A-98A.Google Scholar
  53. Parks, J.W. and Hamilton, A.L. (1987). Accelerating recovery of the mercury-contaminated Wabigoon/English River system. Hydrobiologia. 149, 159-88.Google Scholar
  54. Peakall, D.B. and Tucker, R.K. (1985). Extrapolation from single species studies to populations, communities and ecosystems. In V.B. Vouk, G.C. Butler, D.G. Hoel and D.B. Peakall (eds) Methods for Estimating Risk of Chemical Injury: Human and Non-human Biota and Ecosystems. SCOPE Vol. 26, pp. 611-36.Google Scholar
  55. Piper, W., Paruk, J.D., Evers, D.C., Meyer, M.W., Tischler, K.B., Kaplan, J.D. and Fleischer, R.C. (1997a). Genetic monogamy in common loon.. Behav. Ecol. Sociobiol. 41, 25-31.Google Scholar
  56. Piper, W., Paruk, J.D., Evers, D.C., Meyer, M.W., Tishler, K.B., Klich, M. and Hartigan, J.J. (1997b). Local movements of color-marked common loons. J. Wildl. Manag. 61, 1253-61.Google Scholar
  57. Posthuma, L., Suter, G.W. and Traas, T.P. (2002). Species Sensitivity Distributions in Ecotoxicology. Boca Raton, Florida, USA: Lewis Publ.Google Scholar
  58. SAS Institute (1999). JMP Statistical Discovery Software. Cary, NC, USA: SAS Institute.Google Scholar
  59. Scheuhammer, A.M. (1991). Effects of acidification on the availability of toxic metals and calcium to wild birds and mammals. Environ. Pollut. 71, 329-75.Google Scholar
  60. Scheuhammer, A.M., Atchison, C.M., Wong, A.H.K. and Evers, D.C. (1998b). Mercury exposure in breeding common loons (Gavia immer) in central Ontario, Canada. Environ. Toxicol. Chem. 17, 191-6.Google Scholar
  61. Scheuhammer, A.M. and Blancher, P.J. (1994). Potential risks to common loons (Gavia immer) from methylmercury exposure in acidified lakes. Hydrobiologia 279/280, 445-55.Google Scholar
  62. Scheuhammer, A.M., Perrault, J.A. and Bond, D.E. (2001). Mercury, methylmercury, and selenium concentrations in eggs of common loons (Gavia immer) from Canada. Environ. Monitor. Assess. 72, 79-94.Google Scholar
  63. Scheuhammer, A.M., Wong, A.H.K. and Bond, D.E. (1998a). Mercury and selenium accumulation in common loons (Gavia immer) and common mergansers (Mergus merganser) from eastern Canada. Environ. Toxicol. Chem. 17, 197-201.Google Scholar
  64. Sell, J.L., Guenter, W. and Sifri, M. (1974). Distribution of mercury among components of eggs following the administration of methylmercuric to chickens. J. Agr. Food. Chem. 22, 248-51.Google Scholar
  65. Simonin, H.A., Gloss, S.P., Driscoll, C.T., Schofield, C.L., Kretser, W.A., Karcher, R.W. and Symula, J. (1994). Mercury in yellow perch from Adirondack drainage lakes (New York, US). In C.J. Watras and J.W. Huckabee (eds) Mercury Pollution: Integration and Synthesis, pp. 457-69. Boca Raton, FL, USA: Lewis Publ.Google Scholar
  66. Stickel, L.F., Wiemeyer, S.N. and Blus, L.J. (1973). Pesticide residues in eggs of wild birds: adjustment for loss of moisture and lipid. Bull. Environ. Contam. Tox. 9, 193-6.Google Scholar
  67. Thaxton, P. and Parkhurst, C.R. (1973). Abnormal mating behavior and reproductive dysfunction caused by mercury in Japanese quail.. Proc. Soc. Exp. Biol. Med. 144, 252-5.Google Scholar
  68. Thompson, D.R. (1996). Mercury in birds and terrestrial animals. In W.N. Beyer, G.H. Heinz and A.W. Redmon-Norwood (eds) Environmental Contaminants in Wildlife: Interpreting Tissue Concentrations., pp. 341-55. Boca Raton FL, USA: Lewis Publ.Google Scholar
  69. Tremblay, A. (1999). Bioaccumulation of mercury and methylmercury in invertebrates from natural boreal lakes. In M. Lucotte, R. Schetagne, N. Therien, C. Langlois and A. Tremblay (eds) Mercury in the Biogeochemical Cycle, pp. 89-112. NY, USA: Springer Verlag.Google Scholar
  70. USEPA (1997). Mercury study report to congress. Volume VII: characterization of human health and wildlife risks from mercury exposure in the United States. EPA-452/R-97-009.Google Scholar
  71. Wagemann, R., Trebacz, E., Hunt, R. and Boila, G. (1997). Percent methylmercury and organic mercury in tissues of marine mammals and fish using different experimental and calculation methods. Environ. Toxicol. Chem. 16, 1859-66.Google Scholar
  72. Watras, C.J. and Huckabee, J.W. (1994). Mercury Pollution: Integration and Synthesis. Boca Raton, FL, USA: Lewis Publ.Google Scholar
  73. Wiemeyer, S.N., Lamont, T.G., Bunck, C.M., Sindelar, C.R., Gramlich, F.J., Fraser, J.D. and Byrd, M.A. (1984). Organochlorine pesticide, polychlorobiphenyl and mercury residues in bald eagle eggs—1969–1979—and their relationship to shell thinning and reproduction. Arch. Environ. Contam. Toxicol. 13, 529-49.Google Scholar
  74. Wiener, J.G. and Spry, D.J. (1996). Toxicological significance of mercury in freshwater fish. In W.N. Beyer, G.H. Heinz and A.W. Redmon-Norwood (eds) Environmental Contaminants in Wildlife: Interpreting Tissue Concentrations, pp. 297-339. Boca Raton, FL, USA: Lewis Publ.Google Scholar
  75. Yonge, K.S. (1981). The breeding cycle and annual production of the common loon (Gavia immer) in the boreal forest region M.S. Thesis, Univ. Manitoba, Winnipeg, Canada.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • D.C. Evers
    • 1
  • K.M. Taylor
    • 2
  • A. Major
    • 3
  • R.J. Taylor
    • 4
  • R.H. Poppenga
    • 5
  • A.M. Scheuhammer
    • 6
  1. 1.BioDiversity Research InstituteFalmouthUSA
  2. 2.Loon Preservation CommitteeMoultonboroughUSA
  3. 3.US Fish and Wildlife ServiceConcordUSA
  4. 4.Trace Element Research LabTexas A&M UniversityCollege StationUSA
  5. 5.School of Veterinary MedicineUniversity of PennsylvaniaKennet SquareUSA
  6. 6.Canadian Wildlife ServiceNational Wildlife Research CentreHull, QuebecCanada

Personalised recommendations