Advertisement

Plant Growth Regulation

, Volume 39, Issue 2, pp 161–170 | Cite as

The effects of auxin on lateral root initiation and root gravitropism in a lateral rootless mutant Lrt1 of rice (Oryza sativa L.)

  • Tory Chhun
  • Shin Taketa
  • Seiji Tsurumi
  • Masahiko Ichii
Article

Abstract

Auxins control growth and development in plants, including lateral rootinitiation and root gravity response. However, how endogenous auxin regulatesthese processes is poorly understood. In this study, the effects of auxins onlateral root initiation and root gravity response in rice were investigatedusing a lateral rootless mutant Lrt1, which fails to formlateral roots and shows a reduced root gravity response. Exogenous applicationof IBA to the Lrt1 mutant restored both lateral rootinitiation and root gravitropism. However, application of IAA, a major form ofnatural auxin, restored only root gravitropic response but not lateral rootinitiation. These results suggest that IBA is more effective than IAA in lateralroot formation and that IBA also plays an important role in root gravitropicresponse in rice. The application of NAA restored lateral root initiation, butdid not completely restore root gravitropism. Root elongation assays ofLrt1 displayed resistance to 2,4-D, NAA, IBA, and IAA.This result suggests that the reduced sensitivity to exogenous auxins may be due tothe altered auxin activity in the root, thereby affecting root morphology inLrt1.

Auxin Gravitropism Lateral root initiation Lateral roots Mutant Rice 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baraldi R., Bertazza G., Predieri S., Bregoli M.A. and Cohen J.D. 1993. Uptake and metabolism of indole-3-butyric acid during the in vivorooting phase in pear cultivars (Pyrus communis). Acta Hort. 329: 289-291.Google Scholar
  2. Bartel B., LeClere S., Magidin M. and Zolman B.K. 2001. Inputs to the active indole-3-acetic acid pool: De novosynthesis, conjugate hydrolysis, and indole-3-butyric acid β-oxidation. Plant Growth Regul. 20: 198-216.Google Scholar
  3. Bethany Z.K., Yoder A. and Bartel B. 2000. Genetic analysis of indole-3-butyric acid response in Arabidopsis thalianareveals four mutant classes. Genetics 156: 1323-1337.Google Scholar
  4. Boerjan W., Cervera M.T., Delarue M., Beeckman T., Dewitte W., Bellini C. et al. 1995. superroot, a recessive mutation in Arabidopsis, confers auxin overproduction. Plant Cell 7: 1405-1419.Google Scholar
  5. Celenza J.L., Grisafi P.L. and Fink G.R. 1995. A pathway for lateral root formation in Arabidopsis thaliana. Genes Dev 9: 2131-2142.Google Scholar
  6. DeKlerk G.J., Krieken W.V. and Jong J.C. 1999. The formation of adventitious roots: New concepts, new possibilities. In vitro Cell. Dev. Biol. Plant 35: 189-199.Google Scholar
  7. Delbarre A., Muller P., Imhoff V. and Guern J. 1996. Comparison of mechanisms controlling uptake and accumulation of 2,4-dichlorophenoxy acetic acid, naphthalene-1-acetic acid, and indole-3-acetic acid in suspension-cultured tobacco cells. Planta 198: 532-541.Google Scholar
  8. Epstein E. and Lavée S. 1984. Conversion of indole-3-butyric acid to indole-3-acetic acid by cuttings of grapevine (Vitis vinifera) and olive (Olea europea). Plant Cell Physiol. 25: 697-703.Google Scholar
  9. Epstein E. and Ludwig-Müller J. 1993. Indole-3-butyric acid in plants: occurrence, synthesis, metabolism and transport. Physiol Plant 88: 382-389.Google Scholar
  10. Estelle M. and Somerville C. 1987. Auxin-resistant mutants of Arabidopsis thalianawith an altered morphology. Mol. Gen. Genet. 206: 200-206.Google Scholar
  11. Gray W.M., del Pozo J.C., Walker L., May S.T., Hobbie L., Risseeuw E. et al. 1999. Identification of an SCF ubiquitin-ligase complex required for auxin response in Arabidopsis thaliana. Genes Dev. 13: 1678-1691.Google Scholar
  12. Hao Z. and Ichii M. 1999. A mutant RM109 of rice (Oryza sativaL.) exhibiting altered lateral root initiation and gravitropism. Jpn J. Crop Sci. 68: 245-252.Google Scholar
  13. Hartmann H.T., Kester D.E. and Davies F.T. 1990. Plant Propagation: Principles and Practices. Prentice-Hall, Englewood Cliff, NJ, pp: 199–245.Google Scholar
  14. Hasenstein K.H. and Evans M.L. 1988. The effect of cations on hormone transport in primary roots of Zea Mays. Plant Physiol. 86: 890-894.Google Scholar
  15. Hobbie L. and Estelle M. 1995. The axr4auxin-resistant mutants of Arabidopsis thalianadefine a gene important for gravitropism and lateral root initiation. Plant J. 7: 211-220.Google Scholar
  16. Hobbie L., McGovern M., Hurwitz L.R., Pierro A., Liu N.Y., Bandyopadhyay A. et al. 2000. The axr6mutants of Arabidopsis thalianadefine a gene involved in auxin response and early development. Development 127: 23-32.Google Scholar
  17. King J.J., Stimart D.P., Fisher R.H. and Bleecker A.B. 1995. A mutation altering auxin homeostasis and plant morphology in Arabidopsis. Plant Cell 7: 2023-2037.Google Scholar
  18. Laskowski M.J., Williams M.E., Nusbaum C. and Sussex I.M. 1995. Formation of lateral root meristems is a two-stage process. Development 121: 3303-3310.Google Scholar
  19. Leyser H.M., Pickett F.B., Dharmasiri S. and Estelle M. 1996. Mutations in the AXR3gene of Arabidopsisresult in altered auxin response including ectopic expression from the SAUR-AC1promoter. Plant J. 10: 403-413.Google Scholar
  20. Ludwig-Müller J. and Epstein E. 1991. Occurrence and in vivobiosynthesis of indole-3-butyric acid in corn (Zea maysL.). Plant Physiol. 97: 767-770.Google Scholar
  21. Ludwig-Müller J. and Epstein E. 1993. Indole-3-butyric acid in Arabidopsis thaliana. II. In vivometabolism. Plant Growth Reg. 13: 189-195.Google Scholar
  22. Ludwig-Müller J., Sass S., Sutter E., Wonder M. and Epstein E. 1993. Indole-3-butyric acid synthetase from maize (Zea maysL.). Physiol Plant 94: 651-660.Google Scholar
  23. Maher E.P. and Martindale S.J. 1980. Mutants of Arabidopsis thalianawith altered responses to auxins and gravity. Biochem. Genet 18: 1041-1053.Google Scholar
  24. Mirza J.I., Olsen G.M., Iversen T.H. and Maher E.P. 1984. The growth and gravitropic response of wild-type and auxin-resistant mutants of Arabidopsis thaliana. Physiol Plant 60: 516-522.Google Scholar
  25. Muday G.K., Lomax T.L. and Rayle D.L. 1995. Characterization of the growth and auxin physiology of roots of the tomato mutant, diageotropica. Planta 195: 548-553.Google Scholar
  26. Nordström A.C., Jacobs F.A. and Eliasson L. 1991. Effect of exogenous indole-3-acetic acid and indole-3-butyric acetic on internal levels of the respective auxins and their conjugation with aspartic acid during adventitious root formation in pea cuttings. Plant Physiol. 96: 856-861.Google Scholar
  27. Poupart J. and Waddell C.S. 2000. The rib1mutant is resistant to indole-3-butyric acid, an endogenous auxin in Arabidopsis. Plant Physiol. 124: 1739-1751.Google Scholar
  28. Pythoud F. and Buchala A.J. 1989. The fate of vitamin D3 and indolylbutyric acid applied to cuttings of Populus tremulaL. during adventitious root formation. Plant Cell Environ. 12: 489-494.Google Scholar
  29. Reed R.C., Brandy S.R. and Muday G.K. 1998. Inhibition of auxin movement from the shoot into the root inhibits lateral root development in Arabidopsis. Plant Physiol. 118: 1369-1378.Google Scholar
  30. Ruegger M., Dewey E., Gray W.M., Hobbie L., Turner J. and Estelle M. 1998. The TIR1 protein of Arabidopsisfunctions in auxin response and is related to human SKP2 and yeast Grr1p. Genes Dev. 12: 198-207.Google Scholar
  31. Sutter E.G. and Cohen J.D. 1992. Measurement of indole-3-butyric acetic acid in plant tissue by isotope dilution gas chromatography-mass spectrometry analysis. Plant Physiol. 99: 1719-1722.Google Scholar
  32. Torrey J.G. 1986. Endogenous and exogenous influences on the regulation of lateral root formation, in new root formation in plants and cuttings. In: Jackson M.B. (ed.), Martinus Nijhoff., pp. 32-66.Google Scholar
  33. Wightman F., Schneider E.A. and Thimann K.V. 1980. Hormonal factors controlling the initiation and development of lateral roots. II.Effects of exogenous growth factors on lateral root formation in pea roots. Physiol. Plant 49: 304-314.Google Scholar
  34. Wilson A.K., Pickett F.B., Turner J.C. and Estelle M. 1990. A dominant mutation in Arabidopsisconfers resistance to auxin, ethylene and abscisic acid. Mol.Gen. Genet. 222: 377-383.Google Scholar
  35. Yamamoto M. and Yamamoto K.T. 1998. Differential effects of 1-naphthaleneacetic acid, indole-3-acetic acid and 2,4-dichlorophenoxyacetic acid on the gravitropic response of roots in an auxin-resistant mutant of Arabidopsis, aux1. Plant Cell Physiol. 39: 660-664.Google Scholar
  36. Yang T. and Davies P.J. 1999. Promotion of stem elongation by indole-3-butyric acid in intact plants of Pisum sativumL. Plant Growth Regul. 27: 157-160.Google Scholar
  37. Zolman B.K., Yoder A. and Bartel B. 2000. Genetic analysis of indole-3-butyric acid response in Arabidopsis thalianareveals four mutant classes. Genetics 156: 1323-1327.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • Tory Chhun
    • 1
  • Shin Taketa
    • 1
  • Seiji Tsurumi
    • 2
  • Masahiko Ichii
    • 1
  1. 1.Faculty of AgricultureKagawa UniversityMikiJapan
  2. 2.Graduate school of Science and Technology (A.R., A.A., T.A.) and Radioisotope Research Center (S.T.)Kobe UniversityRokkodai, NadakuJapan

Personalised recommendations