Mössbauer study of transformation mechanism of Fe cations in olivine after thermal treatments in air

  • K. Barcova
  • M. Mashlan
  • R. Zboril
  • P. Martinec


The transformation mechanism of Fe cations in natural olivine after thermal treatments in air has been studied using mainly57Fe Mössbauer spectroscopy. γ-Fe2O3 nanoparticles appear as the primary Fe3+ phase in Mössbauer spectra of olivine samples heated at 600-900 °C. These nanoparticles are thermally unstable and they are transformed to α-Fe2O3 with the increase of heating time. Another transformation mechanism of iron related with the complete decomposition of olivine structure has been observed at temperatures of 1000 °C and higher. The mixed oxide MgFe2O4 with the spinel structure and enstatite MgSiO3 were identified as iron-bearing decomposition products.


Oxide Iron Olivine Thermal Treatment Mixed Oxide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. R. Bauminger, L. Ben-Dor, I. Felner, E. Fischbein, I. Nowik, S. Ofer, Physica, 86-88B (1977) 910.Google Scholar
  2. 2.
    E. Tronc, C. ChanÉac, J. P. Jolivet, J. Solid State Chem., 139 (1998) 93.Google Scholar
  3. 3.
    R. Zboril, M. Mashlan, D. Krausova, P. Pikal, Hyperfine Interact., 120-121 (1999) 497.Google Scholar
  4. 4.
    K. Barcova, M. Mashlan, R. Zboril, P. Martinec, P. Kula, Czech. J. Phys., 51 (2001) 749.Google Scholar
  5. 5.
    M. Mashlan, Z. Sindelar, P. Martinec, M. Chmielova, A. L. Kholmetskii, Czech. J. Phys., 47 (1997) 571.Google Scholar
  6. 6.
    M. Mashlan, K. Barcova, M. Vujtek, R. Zboril, D. Krausova, P. Martinec, Bull. Liasion S.F.M.C., 13 (2001) 92.Google Scholar
  7. 7.
    L. ThiÉblot, J. Roux, P. Richet, Eur. J. Mineral., 10 (1998) 7.Google Scholar
  8. 8.
    S. A. T. Redfern, K. S. Khight, Mineral. Mag., 62 (1998) 607.Google Scholar
  9. 9.
    T. Ericsson, O. Amcoff, M. Kalinowski, Neues Jb. Miner., 11 (1999) 518.Google Scholar
  10. 10.
    S. Iijima, A. Nomura, F. Mizukami, S. Shin, F. Mizutani, J. Radioanal. Nucl. Chem., 239 (1999) 297.Google Scholar
  11. 11.
    T. Liu, L. Guo, Y. Tao, Y. B. Wang, W. D. Wang, Nanostruct. Mater., 11 (1999) 487.Google Scholar
  12. 12.
    C. Pascal, J. L. Pascal, F. Favier, M. L. Elidrissi Moubtassim, C. Payen, Chem. Mater., 11 (1999) 141.Google Scholar
  13. 13.
    P. M. A. De Bakker, E. De Grave, R. E. Vandenberghe, L. H. Bowen, Hyperfine Interact., 54 (1990) 493.Google Scholar
  14. 14.
    K. Haneda, K. Morrish, Phys. Lett., A64 (1977) 259.Google Scholar
  15. 15.
    A. B. Makeev, L. D. Zaripova, Dokl. Acad. Sci. USSR, Earth Sci. Sect. (Engl. Transl.), 275 (1984) 129.Google Scholar

Copyright information

© Kluwer Academic Publishers/Akadémiai Kiadó 2003

Authors and Affiliations

  • K. Barcova
    • 1
  • M. Mashlan
    • 1
  • R. Zboril
    • 2
  • P. Martinec
    • 3
  1. 1.Department of Experimental PhysicsPalacky UniversityOlomoucCzech Republic
  2. 2.Department of Inorganic and Physical ChemistryPalacky UniversityCzech Republic
  3. 3.Institute of GeonicsAcademy of Sciences of the Czech RepublicOstravaCzech Republic

Personalised recommendations