Advertisement

Journal of Low Temperature Physics

, Volume 114, Issue 3–4, pp 371–388 | Cite as

Diffusion and Localization of Ultra-Cold Particles on Rough Substrates

  • A. Stepaniants
  • D. Sarkisov
  • A. Meyerovich
Article

Abstract

Diffusion and localization of ultra-cold particles moving along randomly corrugated substrates is analyzed quasianalytically. The particles are either bound to the substrate or pressed to it by the external holding field. The localization length and diffusion coefficient are expressed explicitly via the correlation radius of surface inhomogeneities. This quantum bouncing hall problem with a random rough wall is solved analytically in three limiting cases of longwave particles, large gaps between bound states, and single-state occupancy. Elsewhere, the diffusion coefficient and localization length are evaluated numerically for Gaussian correlation of inhomogeneities. The results are applied to ultra-cold neutrons in the gravitational trap, electrons on helium and hydrogen surfaces, and hydrogen particles bound to helium surface. Experimental observation of weak 2D localization for neutrons and electrons requires further cooling and substrate preparation.

Keywords

Helium Diffusion Coefficient Localization Length Rough Wall Correlation Radius 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    P. A. Lee and T. V. Ramakrishnan, Rev. Mod. Phys. 57, 287 (1985).Google Scholar
  2. 2.
    B. Altshuler, in Nanostructures and Mesoscopic Systems, W. P. Kirk and M. A. Reed (eds.), Academic Press, New York (1991), p. 405–416.Google Scholar
  3. 3.
    A. McGurn and A. Maradudin, Phys. Rev. B 30, 3136 (1984).Google Scholar
  4. 4.
    P. Arseyev, JETP Lett. 45, 163 (1987) [Pis'ma Zh. Eksp. & Teor. Fiz. 45, 132 (1987)].Google Scholar
  5. 5.
    L. I. Glazman, G. B. Lesovik, D. E. Khmel'nitskii, and R. I. Shekhter, JETP Lett. 48, 238 (1988) [Pis'ma Zh. Eksp. & Teor. Fiz. 48, 218 (1988)].Google Scholar
  6. 6.
    D. A. Wharam, T. J. Thornton, R. Newbury, M. Pepper, H. Ahmed, J. E. F. Frost, D. G. Haskon, D. C. Peacock, D. A. Ritchie, and G. A. C. Jones, J. Phys. C 21, L209 (1988).Google Scholar
  7. 7.
    B. J. van Wees, H. van Houten, C. W. J. Beenakker, J. G. Williamson, L. P. Kouwenhoven, D. van der Marel, and C. T. Foxon, Phys. Rev. Lett. 60, 848 (1988).CrossRefPubMedGoogle Scholar
  8. 8.
    V. I. Kozub and A. A. Krokhin, J. Phys. Cond. Matter 5, 9135 (1993).Google Scholar
  9. 9.
    A. E. Meyerovich and S. Stepaniants, Phys. Rev. Lett. 73, 316 (1994); Phys. Rev. B 51, 17116 (1995); J. Phys. Cond. Matt. 9, 4157 (1997).Google Scholar
  10. 10.
    A. E. Meyerovich and A. Stepaniants, Phys. Rev. B 58, 13242 (1998).Google Scholar
  11. 11.
    B. Lushchikov and A. I. Frank, JETP Lett. 28, 607 (1978).Google Scholar
  12. 12.
    A. E. Meyerovich and A. Stepaniants, in Condensed Matter Theories, V. 22 (1998), in print.Google Scholar
  13. 13.
    J. A. Ogilvy, Theory of Wave Scattering from Random Rough Surfaces, IOP Publishing, Bristol (1991).Google Scholar
  14. 14.
    R. M. Feenstra, D. A. Collins, D. Z.-Y. Ting, M. W. Wang, and T. C. McGill, Phys. Rev. Lett. 72, 2749 (1994).Google Scholar
  15. 15.
    T. Bestle, P. Geltenbort, S. S. Malik, and A. Steyerl, Proc. ISINN-6, May 1998, in print.Google Scholar
  16. 16.
    V. P. Alfimenkov, A. V. Strelkov, V. N. Shvetsov, V. V. Nesvizhevskii, R. R. Tal'daev, and A. G. Kharitouov, JETP Lett. 55, 84 (1992) [Pis'ma Zh. Eksp. & Teor. Fiz. 55, 92 (1992)].Google Scholar
  17. 17.
    A. J. Dahm, J. Low Temp. Phys. 23, 639 (1997; I. Karakurt and A. Dahm, J. Low Temp. Phys. 113 (1998).Google Scholar
  18. 18.
    S. S. Sokolov, G.-H. Hai, and N. Studart, Phys. Rev. B 55, R3370 (1977).Google Scholar
  19. 19.
    Yu. Z. Kovdrya, V. A. Nikolaenko, H. Yayama, A. Tomokiyo, O. I. Kirichek, and I. B. Berkutov, J. Low Temp. Phys. 110, 191 (1998).Google Scholar
  20. 20.
    I. Silvera, J. Low Temp. Phys. 101, 49 (1995).Google Scholar
  21. 21.
    J. T. M. Walraven, in Fundamental Systems in Quantum Optics, J. Dalibard, J. M. Raimond, and J. Zinn-Justin (eds.), Elsevier (1992), p. 485.Google Scholar
  22. 22.
    A. Stepaniants, D. Sarkisov, A. Meyerovich, and A. Steyerl, J. Low Temp. Phys. 113 (1998).Google Scholar

Copyright information

© Plenum Publishing Corporation 1999

Authors and Affiliations

  • A. Stepaniants
    • 1
  • D. Sarkisov
    • 1
  • A. Meyerovich
    • 1
  1. 1.Department of PhysicsUniversity of Rhode IslandKingstonUSA

Personalised recommendations