Designs, Codes and Cryptography

, Volume 28, Issue 2, pp 135–146 | Cite as

Linear Complexity of the Discrete Logarithm

  • Sergei Konyagin
  • Tanja Lange
  • Igor Shparlinski


We obtain new lower bounds on the linear complexity of several consecutive values of the discrete logarithm modulo a prime p. These bounds generalize and improve several previous results.

discrete logarithm linear recurrence sequences linear complexity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. Buchmann and D. Weber, Discrete logarithms: Recent progress, In Proc. International Conference on Coding Theory, Cryptography and Related Areas, Guanajuato, 1998, Springer-Verlag, Berlin (2000) pp. 42–56.Google Scholar
  2. 2.
    D. Coppersmith and I. E. Shparlinski, On polynomial approximation of the discrete logarithm and the Diffie- Hellman mapping, J. Cryptology, Vol. 13 (2000) pp. 339–360.Google Scholar
  3. 3.
    T. W. Cusick, C. Ding and A. Renvall, Stream Ciphers and Number Theory, Elsevier, Amsterdam (1998).Google Scholar
  4. 4.
    C. Ding, Linear complexity of generalized cyclotomic binary sequences of order 2, Finite Fields and Their Appl., Vol. 3 (1997) pp. 159–174.Google Scholar
  5. 5.
    C. Ding and T. Helleseth, On cyclotomic generator of order r, Inform. Proc. Letters, Vol. 66 (1998) pp. 21–25.Google Scholar
  6. 6.
    C. Ding, T. Helleseth and K. Y. Lam, Duadic sequences of prime length, Discr. Math., Vol. 218 (2000) pp. 33–49.Google Scholar
  7. 7.
    C. Ding, T. Helleseth and W. Shan, On the linear complexity of Legendre sequences, IEEE Trans. Inform. Theory, Vol. 44 (1998) pp. 1276–1278.Google Scholar
  8. 8.
    T. Lange and A. Winterhof, Interpolation of the discrete logarithm by Boolean functions, In Proc. Intern. Workshop on Coding and Cryptography, INRIA, Paris (2001) pp. 335–343.Google Scholar
  9. 9.
    T. Lange and A. Winterhof, Incomplete character sums and their application to the interpolation of the discrete logarithm by Boolean functions, Acta Arith., Vol. 101 (2002) pp. 223–229.Google Scholar
  10. 10.
    R. Lovorn Bender and C. Pomerance, Rigorous discrete logarithm computations in finite fields via smooth polynomials, Computational Perspectives on Number Theory, Amer. Math. Soc., Providence, RI (1998) pp. 221–232.Google Scholar
  11. 11.
    K. S. McCurley, The discrete logarithm problem, In Proc. Symp. in Appl. Math., Amer. Math. Soc., Providence, RI, Vol. 42 (1990) pp. 49–74.Google Scholar
  12. 12.
    W. Meidl and A. Winterhof, Lower bounds on the linear complexity of the discrete logarithm in finite fields, IEEE Trans. Inform. Theory, Vol. 47 (2001) pp. 2807–2811.Google Scholar
  13. 13.
    A. J. Menezes, P. C. van Oorschot and S. A. Vanstone, Handbook of Applied Cryptography. CRC Press, Boca Raton, FL (1996).Google Scholar
  14. 14.
    G. L. Mullen and D. White, A polynomial representation for logarithms in GF(q), Acta Arith., Vol. 47 (1986) pp. 255–261.Google Scholar
  15. 15.
    H. Niederreiter, Some computable complexity measures for binary sequences, In Proc. Intern. Conf. on Sequences and their Applications (SETA'98), Singapore, Springer-Verlag, London (1999) pp. 67–78.Google Scholar
  16. 16.
    H. Niederreiter and A. Winterhof, Incomplete exponential sums and their applications to the polynomial approximation of the discrete logarithm, Finite Fields and Their Appl., Vol. 8 (2002) pp. 184–192.Google Scholar
  17. 17.
    A. M. Odlyzko, Discrete logarithms: The past and the future, Designs, Codes and Cryptography, Springer-Verlag, Berlin, Vol. 19 (2000) pp. 129–145.Google Scholar
  18. 18.
    C. Pomerance, Fast, rigorous factorization and discrete logarithm algorithms, Discrete Algorithms and Complexity, Academic Press, San Diego, CA (1987) pp. 119–143.Google Scholar
  19. 19.
    R. A. Rueppel, Stream ciphers, Contemporary Cryptology: The Science of Information Integrity, IEEE Press, NY (1992) pp. 65–134.Google Scholar
  20. 20.
    O. Schirokauer, D. Weber and T. Denny, Discrete logarithms: The effectiveness of the index calculus method, Lect. Notes in Comp. Sci., Springer-Verlag, Berlin, Vol. 1122 (1996) pp. 337–362.Google Scholar
  21. 21.
    I. E. Shparlinski, Finite Fields: Theory and Computation, Kluwer Acad. Publ., Dordrecht (1999).Google Scholar
  22. 22.
    I. E. Shparlinski, Number Theoretic Methods in Cryptography: Complexity Lower Bounds, Birkhäuser (1999).Google Scholar
  23. 23.
    D. R. Stinson, Cryptography: Theory and Practice, CRC Press, Boca Raton, FL (1995).Google Scholar
  24. 24.
    A. Winterhof, Polynomial interpolation of the discrete logarithm, Designs, Codes and Cryptography, Vol. 25 (2002) pp. 63–72.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • Sergei Konyagin
    • 1
  • Tanja Lange
    • 2
  • Igor Shparlinski
    • 3
  1. 1.Department of Mechanics and MathematicsMoscow State UniversityMoscowRussia
  2. 2.Institute of Experimental MathematicsUniversity of EssenEssenGermany
  3. 3.Department of ComputingMacquarie UniversitySydneyAustralia

Personalised recommendations