Ecotoxicology

, Volume 12, Issue 1–4, pp 345–363 | Cite as

Immunotoxicity of Organophosphorous Pesticides

Article

Abstract

This study reviews the toxic effects of organophosphate (OP) pesticides on the immune systems and immune functions of invertebrates, fish, and higher vertebrate wildlife. The fundamental features and mechanisms of OP-induced immunotoxicity are illustrated with reference to parathion, chlorpyrifos, malathion, and diazinon. Immunotoxicity may be direct via inhibition of serine hydrolases or esterases in components of the immune system, through oxidative damage to immune organs, or by modulation of signal transduction pathways controlling immune functions. Indirect effects include modulation by the nervous system, or chronic effects of altered metabolism/nutrition on immune organs. Immunotoxicities are varied and include pathology of immune organs, and decreased humoral and/or cell mediated immunity. Altered non-specific immunity, decreased host resistance, hypersensitivity and autoimmunity are also features of immunotoxicity; although not all of these have been conclusively demonstrated in terms of pollutant exposure and immunotoxic effects in wildlife within individual experiments. Immunotoxicological biomarkers and biological monitoring tools are urgently needed to assess the extent of immunotoxicity in wildlife. Selection of universal biomarkers is hampered by the physiological diversity of immune systems in animals. However, by drawing on evidence from human epidemiology and tiered approaches in mammalian immunotoxicity evaluation, a selection of generic biomarkers of immunotoxicity in animals is suggested. Priorities for future research are also identified.

pesticide organophosphate immunotoxicity ecotoxicology biomarker 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abbas, A.K., Lichtman, A.H. and Pober, J.S. (2000). Cellular and Molecular Immunology, 6p.4th edn. Philadelphia: Saunders.Google Scholar
  2. Ader, R., Felton, D. and Cohen, N. (1991). Psychoneuroimmunology. San Diego: Academic Press.Google Scholar
  3. Bailey, H.C., Deanovic, L., Reyes, E., Kimball, T., Larson, K., Cortright, K., Conner, V. and Hinton, D.E. (2000). Diazinon and chlorpyrifos in urban waterways in northern California, USA. Environ. Toxicol. Chem. 19, 82-7.Google Scholar
  4. Bakri, N.M., El-Rashidy, S.H., Eldefrawi, A.T. and Eldefrawi, M.E. (1988). Direct actions of organophosphate anticholinesterases on nicotinic and muscarinic acetylcholine receptors. J. Biochem. Toxicol. 3, 235-59.Google Scholar
  5. Barnes, P.J. (1995). Is asthma a nervous disease? Chest 107, 119S-25S.Google Scholar
  6. Barnett, J.B. and Rodgers, K.E. (1994). Pesticides. In J.H. Dean, M.I. Luster, A.E. Munson and I. Kimber (eds) Immunotoxicology and Immunopharmacology, pp. 191-226. New York: Raven Press.Google Scholar
  7. Barnett, J.B., Spyker-Cranmer, J.M., Avery, D.L. and Hobermann, A.M. (1980). Immunocompetence over the life-span of mice exposed in utero to carbofuran or diazinon: 1. Changes in serum immunoglobulin concentrations. J. Environ. Pathol. 4, 53-63.Google Scholar
  8. Barron, M.G. and Woodburn, K.B. (1995). Ecotoxicology of chlorpyrifos. Rev. Environ. Contam. Toxicol. 144, 1-94.Google Scholar
  9. Beaman, J.R., Finch, R., Gardner, H., Hoffmann, F., Rosencrance, A. and Zelikoff, J.T. (1999). Mammalian immunoassays for predicting the toxicity of malathion in a laboratory fish model. J. Toxicol. Environ. Health A 56, 523-42.Google Scholar
  10. Becker, E.L. and Hansen, P.M. (1973). In vitro studies of immunologically induced secretion of mediators from cells and related phenomena. In F.J. Dixon and H.G. Kunkel (eds) Advances in Immunology, pp. 93-193. London: Academic Press.Google Scholar
  11. Belden, J.B. and Lydy, M.J. (2000). Impact of atrazine on organophosphate insecticide toxicity. Environ. Toxicol. Chem. 19, 2266-74.Google Scholar
  12. Bhargava, R.K., Singh, V. and Soni, V. (1977). Erythema multi-forme resulting from insecticide spray. Arch. Dermatol. 113, 686.Google Scholar
  13. Blakley, B.R., Yole, M.J., Brousseau, P., Boermans, H. and Fournier, M. (1999). Effect of chlorpyrifos on immune function in rats. Vet. Hum. Toxicol. 41, 140-4.Google Scholar
  14. Booth, L.H. and O'Halloran, K. (2001). A comparison of biomarker responses in the earthworm Aporrectodea caliginosa to the organophosphorous insecticides diazinon and chlorpyrifos. Environ. Toxicol. Chem. 20, 2494-502.Google Scholar
  15. Bresler, V., Bissinger, V., Abelsen, A., Dizer, H., Sturm, A., Kralke, R., Fishelson, L. and Hansen, P.D. (1999). Marine molluscs and fish as biomarkers of pollutant stress in littoral regions of the Red, Mediterranean and North Seas. Helgoland Marine Res. 53, 219-43.Google Scholar
  16. Brimijoin, S. and Koenigsberger, C. (1999). Cholinesterases in neural development: new findings and toxicological implications. Environ. Health Perspect. 107(Suppl. 1), 59-65.Google Scholar
  17. Bryant, D.H. (1985). Asthma due to insecticide sensitivity. Aust. N. Z. J. Med. 15, 66-8.Google Scholar
  18. Buchanan, D., Pilkington, A., Sewell, C., Tannahill, S.N., Kidd, M.W., Cherrie, B. and Hurley, J.F. (2001). Estimation of cumulative exposure to organophosphate sheep dips in a study of chronic neurological health effects among United Kingdom sheep dippers. Occup. Environ. Med. 58, 694-701.Google Scholar
  19. Bunn, K.E., Thompson, H.M. and Tarrant, K.A. (1996). Effects of agrochemicals on the immune systems of earthworms. Bull. Environ. Contam. Toxicol. 57, 632-9.Google Scholar
  20. Cabello, G., Valenzuela, M., Vilaxa, A., Duran, V., Rudolph, I., Hrepic, N. and Calaf, G. (2001). A rat mammary tumor model induced by the organophosphorous pesticides parathion and malathion, possibly through acetylcholinesterase inhibition. Environ. Health Perspec. 109, 471-9.Google Scholar
  21. Carlock, L.L., Chen, W.L., Gordon, E.B., Killeen, J.C., Manley, A., Meyer, L.S. et al. (1999). Regulating and assessing risks of cholinesterase-inhibiting pesticides: divergent approaches and interpretations. J. Toxicol. Environ. Health B 2, 105-60.Google Scholar
  22. Casale, G.P., Cohen, S.D. and Dicapua, R.A. (1983). The effects of organophosphate-induced stimulation on the antibody response to sheep erythrocytes in inbred mice. Toxicol. Appl. Pharmacol. 68, 198-205.Google Scholar
  23. Ceron, J.J., Sancho, E., Ferrando, M.D., Guitierrez, C. and Andreu, E. (1996). Metabolic effects of diazinon on the European eel Anguilla anguilla. J. Environ. Sci. Health B 31, 1029-40.Google Scholar
  24. Coffey, R.G. and Hadden, J.W. (1985). Neurotransmitters, hormones and cyclic nucleotides in lymphocyte regulation. Fed. Proc. 44, 112-17.Google Scholar
  25. Crittenden, P.L., Carr, R. and Pruett, S.B. (1998). Immunotoxicological assessment of methyl parathion in female B6C3F1 mice. J. Toxicol. Environ. Health 54, 1-20.Google Scholar
  26. Crumpton, T.L., Seidler, F.J. and Slotkin, T.A. (2000). Developmental Neurotoxicity of Chlorpyrifos: in vivo and in vitro effects on nuclear transcription factors involved in cell replication and differentiation. Brain Research 857, 87-98.Google Scholar
  27. Day, B.L., Walser, M.M., Sharma, J.M. and Andersen, D.E. (1995). Immunopathology of 8 week old ring necked pheasants (Phasianus colchicus) exposed to malathion. Environ. Toxicol. Chem. 14, 1719-26.Google Scholar
  28. Dean, J.H. (1994). In, Immunotoxicology and Immunopharmacology, 2nd Edition, Eds. J.H. Dean, M.I. Luster, A.E. Munson and I. Kimber, Raven Press, NY, ppxviii.Google Scholar
  29. Descotes, J. (1999). An Introduction to Immunotoxicity. London: Taylor and Francis.Google Scholar
  30. Descotes, J., Nicolas, B. and Vial, T. (1995). Assessment of immunotoxic effects in humans. Clin. Chem. 41, 1870-3.Google Scholar
  31. Descotes, J., Vial, T. and Verdier, F. (1993). The how, why and when of immunotoxicity testing. Comp. Haematol. Int. 3, 63-6.Google Scholar
  32. Dutta, H.M., Qadri, N., Ojha, J., Singh, N.K., Adhakari, S., Munshi, J.S. and Roy, P.K. (1997). Effect of diazinon on macrophages of bluegill sunfish, Lepomis macrochirus, a cytochemical evaluation. Bull. Environ. Contam. Toxicol. 58, 135-41.Google Scholar
  33. Dyrynda, E. and Ratcliffe, N. (1998). Invertebrate immune defence. The Biochemist (February), 6-11.Google Scholar
  34. Eason, C.T., Svendsen, C., O'Halloran, K. and Weeks, J.M. (1999). An assessment of the lysosomal neutral red retention test and immune function assay in earthworms (Eisinia andrei) following exposure to chlorpyrifos, benzo-a-pyrene and contaminated soil. Pedobiologia 43, 641-5.Google Scholar
  35. Fairbrother, A., Landis, W.G., Dominiquez, S., Shiroyama, T., Buchholz, P., Roze, M.J. and Matthews, G.B. (1998). A novel multivariate approach to the evaluation of biomarkers in terrestrial field studies. Ecotoxicology 7, 1-10.Google Scholar
  36. Fan, A., Street, J.C. and Nelson, R.M. (1984). Immunosuppression in mice administered methyl parathion and carbofuran by diet. Toxicol. Appl. Pharmacol. 45, 235-41.Google Scholar
  37. Federal Register (1997). Toxic Substances Control Act Test Guidelines, Final Rule 62, 43819-64.Google Scholar
  38. Flajnik, M.F. (1998). Churchill and the immune system of ectothermic vertebrates. Immunol. Rev. 166, 5-14.Google Scholar
  39. Fox, G.A. (1991). Practical causal inference for epidemiologists. J. Toxicol. Environ. Health 33, 359-73.Google Scholar
  40. Gaberlein, S., Knoll, M., Spencer, F. and Zaborosch, C. (2000). Disposable potentiometric enzyme sensor for direct determination of organophosphorous insecticides. Analyst 125, 2274-9.Google Scholar
  41. Gallo, M.A. and Lawryk, N.J. (1991). Organic phosphorus pesticides. In W.J. Hayes and E.R. Laws (eds) Handbook of Pesticide Toxicology, pp. 917-1123. San Diego, CA: Academic Press.Google Scholar
  42. Galloway, T.S. and Depledge, M.H. (2001). Immunotoxicity in invertebrates: measurement and ecotoxicological relevance. Ecotoxicology 10, 1-23.Google Scholar
  43. Garry, V., Kelly, J., Sprafka, J., Edwards, S. and Griffith, J. (1994). Survey of health and use characterisation of pesticide appliers in Minnesota. Arch. Environ. Health 49, 337-43.Google Scholar
  44. Germolec, D.R., Adams, N.H. and Luster, M.I. (1997). The importance of enzymatic biotransformation in immunotoxicology. Rev. Toxicol. 1, 33-51.Google Scholar
  45. Gershwin, M.E., Beach, R.S. and Hurley, L.S. (1985). Nutrition and Immunity, pp. 156-284. Orlando: Academic Press.Google Scholar
  46. Gordon, C.J. and Rowsey, P.J. (1999). Are circulating cytokines interleukin-6 and tumour necrosis factor alpha involved in chlorpyrifos induced fever? Toxicology 134, 9-17.Google Scholar
  47. Gore, A.C. (2001). Environmental toxicant effects on neuroendocrine function. Endocrine 14, 235-46.Google Scholar
  48. Gotoh, M., Saito, I., Huang, J., Fukaya, Y., Matsumoto, T., Hisanaga, N., Shibata, E., Ichihara, G., Kamajima, M. and Takeuchi, Y. (2001). Changes in cholinesterase activity, nerve conductance velocity and clinical signs and symptoms in termite control operators exposed to chlorpyrifos. J. Occupat. Health 43, 157-64.Google Scholar
  49. Goven, A.J., Fitpatrick, L.C. and Venables, B.J. (1994). Chemical toxicity and host defence in earthworms. Ann. NY Acad. Sci. 712, 280-300.Google Scholar
  50. Grisaru, D., Sternfeld, M., Eldor, A., Glick, D. and Soreq, H. (1999). Structural roles of acetylcholinesterase variants in biology and pathology. Eur. J. Biochem. 264, 672-86.Google Scholar
  51. Gromysz-Kalkowska, K., Szubartowska, E. and Kaczanowska, E. (1985). Peripheral blood in the Japanese quail in acute poisoning by different insecticides. Comp. Biochem. Physiol. 81C, 209-12.Google Scholar
  52. Haines, W.T., Tayor, M.M., Crofton, K.M., Marshall, R.S. and Padilla, S. (2001). The anticholinesterase insecticide diazinon may potentiate the toxicity of the pyrethroid insecticide delta-methrin at low doses. J. Neurochem. 78, 193.Google Scholar
  53. Handy, R.D., Abd-el Samei, H.A., Bayomy, M.F.F., Mahran, A.M., Abdeen, A.M. and El-Elaimy, E.A. (2002). Chronic diazinon exposure: pathologies of spleen, thymus, blood cells and lymph nodes are modulated by dietary protein or lipid in the mouse. Toxicology 172, 13-34.Google Scholar
  54. Hermanowicz, H.E. and Kossman, S. (1984). Neutrophil function and infectious diseases in workers occupationally exposed to phospho-organic pesticides. Clin. Immunol. Immunopathol. 33, 13-22.Google Scholar
  55. Hernandez, A.F., Gonzalvo, M.C., Gil, F., Rodrigo, L., Villanueva, E. and Pla, A. (1999). Distribution profiles of paraoxonase and cholinesterase phenotypes in a Spanish population. Chemico-Biological Interactions 120, 201-9.Google Scholar
  56. Inestrosa, N.C. and Perelman, A. (1989). Distribution and anchoring of molecular forms of acetylcholinesterase. Trends Pharmacol. Sci. 10, 325-9.Google Scholar
  57. Institoris, L., Siroki, O., Undeger, U., Desi, I. and Nagymajtenyi, L. (1999a). Immunotoxicological effects of repeated combined exposure by cypermethrin and the heavy metals lead and cadmium in rats. Int. J. Immunopharmacol. 21, 735-43.Google Scholar
  58. Institoris, L., Siroki, O. and Undeger, U. (1999b). Immunological examinations of repeated dose combined exposure by dimethoate and two heavy metals in rats. Hum. Exp. Toxicol. 18, 88-94.Google Scholar
  59. Jeong, T.C., Jordan, S.D., Matulka, R.A., Stanulis, E.D., Kaminski, E.J. and Holsapple, M.P. (1995). Role of metabolism by esterase and cytochrome P450 in cocaine induced suppression of the antibody response. J. Pharmacol. Exp. Ther. 272, 407-16.Google Scholar
  60. Jurd, R.D. (1994). Reptiles and birds. In R.J. Turner (ed.) Immunology, a Comparative Approach, pp. 137-66. Chichester: Wiley and Sons.Google Scholar
  61. Khalaf-Allah, S.S. (1999). Effect of water pollution on some haematological, biochemical and immunological parameters in Tilapia nilotica fish. Deutche Tierarztliche Wochenschrift 106, 67-71.Google Scholar
  62. Koelle, G.B. (1970). Neurohumoral transmission and the autonomic nervous system. In A. Goodman-Gilman (ed.) The Pharmacological Basis of Therapeutics, 4th edn. New York: Macmillan.Google Scholar
  63. Krall, W.J., Sramek, J.J. and Cutler, N.R. (1999). Cholinesterase inhibitors: a therapeutic strategy in Alzheimer's disease. Ann. Pharmacother. 33, 441-50.Google Scholar
  64. LeBris, H., Maffart, P., Bocquene, G., Buchet, V. and Galgani, F. (1995). Laboratory study on the effect of dichlorvos on two commercial bivalves. Aquaculture 138, 139-44.Google Scholar
  65. Lee, T.P., Moscati, R. and Park, B.H. (1979). Effects of pesticides on human leukocyte functions. Res. Commun. Chem. Pathol. Pharmacol. 23, 597-609.Google Scholar
  66. Leubke, R.W., Hodson, P.V., Faisal, M., Ross, P.S., Grasmans, K.A. and Zelikoff, J.T. (1997). Aquatic pollution-induced immunotoxicity in wildlife species. Fundam. Appl. Toxicol. 37, 1-15.Google Scholar
  67. Li, H.Y. and Zhang, S.C. (2001). In vitro cytotoxicity of the organophosphorous pesticide to FG-9307 cells. Toxicol. In Vitro 15, 643-7.Google Scholar
  68. Lotti, M. (1992). The pathogenesis of organophosphorous polyneuropathy. Crit. Rev. Toxicol. 29, 145-63.Google Scholar
  69. Lu, C.S., Knutson, D.E., Fisker-Anderson, J. and Fenske, R.A. (2001). Biololgical monitoring survey of organophosphorous pesticide exposure among preschool children in the seattle metropolitan area. Environ. Health Perspect. 109, 299-303.Google Scholar
  70. Lundholm, E. (1987). Thinning of eggshells in birds by DDE: mode of action on the eggshell gland. Comp. Biochem. Physiol. 88C, 1-22.Google Scholar
  71. Luster, M.I., Munson, A.E., Thomas, P.T., Holsapple, M.P., Fenters, J.D., White, K.L. et al. (1988). Development of a testing battery to assess chemical-induced immunotoxicity. National Toxicology Program's criteria for immunotoxicity evaluation in mice. Fundam. Appl. Toxicol. 10, 2-19.Google Scholar
  72. Luster, M.I., Portier, C., Pait, D.G., White, K.L., Gennings, C., Munson, A.E. and Rosenthal, G.J. (1992). Ris assessment in immunotoxicology. ! sensitivity and predictability of immune tests. Fundam. Appl. Toxicol. 18, 200-10.Google Scholar
  73. Luster, M.I., Portier, C., Pait, D.G. et al. (1992). Risk assessment in immunotoxicology. Sensitivity and predictability of immune tests. Fundam. Appl. Toxicol. 18, 200.Google Scholar
  74. Marinovich, M., Guizzetti, M. and Galli, C.L. (1994). Mixtures of benomyl, pirimiphos-methyl, dimethoate, diazinon and azinphos-methyl affect protein synthesis in HL-60 cells differently. Toxicology 94, 173-85.Google Scholar
  75. Marrs, T.C. (1996). Organophosphate anticholinesterase poisoning. Toxic Subst. Mech. 15, 357-88.Google Scholar
  76. Mennear, J.H. (1998). Dichlorvos, a regulatory conundrum. Reg. Toxicol. Pharmacol. 27, 265-72.Google Scholar
  77. Milby, T. and Epstein, W. (1964). Allergic contact urticaria to malathion. Arch. Environ. Health 9, 434-7.Google Scholar
  78. Moschandreas, D.J., Ari, H., Karuchit, S., Kim, Y., Lebowitz, M.D., O'Rourke, M.K., Gordon, S., Robertson, G. (2001). Exposure to pesticides by medium and route. The 90th percentile and related uncertainties. J. Environ. Eng. ASCE 127, 857-64.Google Scholar
  79. Murphy, S.D. (1986). Toxic effects of pesticides. In C.D. Klaassen, M.O. Amdur and J. Doull (eds) Toxicology, The Basic Science of Poisons, 3rd edn, pp. 519-81. New York.Google Scholar
  80. Navarro, H.A., Basta, P.V., Seidler, F.J. and Slotkin, T.A. (2001). Neonatal chlorpyrifos administration elicits deficits in immune function in adulthood: a neural effect? Dev. Brain Res. 130, 249-52.Google Scholar
  81. OECD (1981). Organisation for Economic Cooperation and Development, OECD Guidelines for testing of Chemicals No. 407.Google Scholar
  82. Osicka-Koprowska, A., Lipska, M. and Wysocka-Paruszewska, B. (1984). Effects of chlorfenvinphos on plasma corticosterone and aldosterone levels in rats. Arch. Toxicol. 55, 68-9.Google Scholar
  83. Ottaviani, E., Franchini, A. and Franchesci, C. (1997). The invertebrate phagocytic immunocyte: clues to a common evolution of immune and neuroendocrine systems. Immunol. Today 18, 169-74.Google Scholar
  84. Padungtod, C., Niu, T.H., Wang, Z.X., Savitz, D.A., Christiani, D.C., Ryan, L.M. and Xu, X.P. (1999). Paraoxonase polymorphism and its effect on male reproductive outcomes among Chinese pesticide factory workers. Amer. J. Indust. Med. 36, 379-87.Google Scholar
  85. Pal, A.K. and Kushwah, H.S. (2000). Quantitative biochemical lesions of malathion dipping of domestic fowl (Gallus domesticus). Asian-Australian J. Anim. Sci. 13, 285-90.Google Scholar
  86. Parentmassin, D. and Thouvenot, D. (1993). In vitro study of pesticide hematoxicity in human and rat progenitors. J. Pharmacol. Toxicol. Meth. 30, 203-7.Google Scholar
  87. Peakall, D.B., Miller, D.S. and Kinter, W.B. (1975). Blood calcium levels and the mechanism of DDE-induced eggshell thinning. Environ. Pollut. 9, 289-94.Google Scholar
  88. Pruett, S.B. (1992). Immunotoxicity of organophosphorous compounds. In J.E. Chambers and P.E. Levi (eds) Organophosphates, Chemistry, Fate and Effects, pp. 123-49. New York: Academic Press.Google Scholar
  89. Pruett, S.B., Ensley, D.K. and Crittenden, P.L. (1993). The role of chemical induced stress responses in immunosuppression. J. Toxicol. Environ. Health 39, 163-92.Google Scholar
  90. Querioz, M.L., Fernandes, M.D. and Valadres, M.C. (1999). Neutrophil function in workers exposed to organophosphorous and carbamate pesticides. Int. J. Immunopharmacol. 21, 263-70.Google Scholar
  91. Quistad, C.B., Sparks, S.E. and Casida, J.E. (2001). Fatty acid amide hydrolase inhibition by neurotoxic organophosphorous pesticides. Toxicol. Appl. Pharmacol. 173, 48-55.Google Scholar
  92. Readman, J.W., Liong Wee Kwong, L., Mee, L.D., Bartocci, J., Nilve, G., Rodriguez-Solano, J.A. and Gonzalez-Farias, F. (1992). Persistent organophosphorous pesticides in tropical marine environments. Mar. Poll. Bull. 24, 398-402.Google Scholar
  93. Richards, P., Johnson, M., Ray, D. and Walker, C.H. (1999). Novel protein targets for organophosphorous compounds. Chem.-Biologic. Interact. 119/120, 503-12.Google Scholar
  94. Rodgers, K.E. and Ellefson, D.D. (1990). Modulation of respiratory burst activity and mitogen response of human peripheral blood mononuclear cells and murine splenocytes and peritoneal cells by malathion. Fundam. Appl. Toxicol. 14, 309-17.Google Scholar
  95. Rodgers, K.E. and Ellefson, D.D. (1992). Mechanism of modulation of murine peritoneal cell function and mast cell degranulation by low doses of malathion. Agents Actions 35, 57.Google Scholar
  96. Rodgers, K.E., Grayson, M.H., Imamura, T. and Devens, B.H. (1985). In vitro effects of malathion and O,O,S-trimethyl phosphorothioate on cytotoxic T lymphocyte responses. Pestic. Biochem. Physiol. 24, 260-6.Google Scholar
  97. Rodgers, K.E., Immamura, T. and Devens, B.H. (1986). Organophosphorous pesticide immunotoxicity: effects of O,O,S-trimethyl phosphorothioate on cellular and humoral immune response systems. Immunopharmacology 12, 193-202.Google Scholar
  98. Rodgers, K. and Xiong, S.Q. (1997a). Contribution of inflammatory mast cell mediators to alterations in macrophage function after malathion administration. Int. J. Immunopharmacol. 19, 149-56.Google Scholar
  99. Rodgers, K.E. and Xiong, S.Q. (1997b). Effect of administration of malathion for 90 days on macrophage function and mast cell degranulation. Toxicol. Lett. 93, 73-82.Google Scholar
  100. Rowsey, P.J. and Gordon, C.J. (1999). Tumour necrosis factor is involved in chlorpyrifos induced changes in core temperature in the female rat. Toxicol. Lett. 109, 51-9.Google Scholar
  101. Schanker, H.M., Rachelefsky, G., Siegel, S., Katz, R., Spector, S., Rohr, A., Rodriquiz, C., Woloshin, K. and Papanek, P.J. (1992). Immediate and delayed type hypersensitivity to malathion. Ann. Allergy 69, 526-8.Google Scholar
  102. Schulz, R. and Liess, M. (1999). A field study of the effects of agriculturally derived insecticide input on stream macroinvertebrate dynamics. Aquat. Toxicol. 46, 155-76.Google Scholar
  103. Selgrade, M.K. (1999). Use of immunotoxicity data in health risk assessments: uncertainties and research to improve the process. Toxicology 133, 59-72.Google Scholar
  104. Selgrade, M.K., Daniels, M.J., Illing, J.W., Ralston, A.L., Grandy, M.A., Charlet, E. and Graham, J. (1984). Increased susceptibility to parathion poisoning following murine cytomegalovirus infection. Toxicol. Appl. Pharmacol. 76, 356-64.Google Scholar
  105. Sharon, J. (1998). Basic Immunology. P.J. Kelly (ed.) Baltimore: Williams and Wilkins.Google Scholar
  106. Shishido, T., Usui, K. and Fukami, J. (1972). Oxidative metabolism of diazinon by microsomes from rat liver and cockroach fat body. Pestic. Biochem. Physiol. 2, 27-38.Google Scholar
  107. Soderhall, K., Iwanga, S. and Vasta, G.R. (1997). New Directions in Invertebrate Immunology. Fairhaven, NJ: SOS Publications.Google Scholar
  108. Solomon, K.R., Giesy, J.P., Kendall, R.J., Best, L.B., Coats, J.R., Dixon, K.R., Hooper, M.J., Kenaga, E.E. and McMurry, S.T. (2001). Chlorpyrifos: ecotoxicological risk assessment for birds and mammals in corn agrosystems. Hum. Ecol. Risk Assess. 7, 497-632.Google Scholar
  109. Stepanovic, R.M., Jokanovic, M. and Maksimovic, M. (1998). Toxicological importance of lymphocyte neuropathy target esterase. Arch. Pharmacol. 358(2), 5413.Google Scholar
  110. Stiller-Winkler, R., Hadnagy, W., Leng, G., Straube, E. and Idel, H. (1999). Immunological parameters in humans exposed to pesticides in the agricultural environment. Toxicol. Lett. 107, 219-24.Google Scholar
  111. Thrasher, J.D., Madison, R. and Broghton, A. (1993). Immunological abnormalities in humans exposed to chlorpyrifos: preliminary observations. Arch. Environ. Health 48, 89-93.Google Scholar
  112. Tucker, E.S. (1994). Consequences of immunodeficiency. In J.H. Dean, M.I. Luster, A.E. Munson and I. Kimber (eds) Immunotoxicology and Immunopharmacology, pp. 1-18. New York: Raven Press Ltd.Google Scholar
  113. Turner, R.J. (1994). Immunology, a Comparative Approach. Chicester: Wiley.Google Scholar
  114. US EPA, (1998). United States Environmental Protection Agency Health Effects Test Guidelines: OPPTS 870.7800. Immunotoxicity.Google Scholar
  115. van den Beukel, I., van Kleef, R. and Oortgeisen, M. (1998). Differential effects of physostigmime and organophosphates on nicotinic receptors in neuronal cells of different species. Neurotoxicology 19, 777-87.Google Scholar
  116. Vial, T., Nicolas, B. and Descotes, J. (1996). Clinical immunotoxicity of pesticides. J. Toxicol. Environ. Health 48, 215-29.Google Scholar
  117. Videira, R.A., Antunes-maseira, M.C., Lopes, V. and Madeira, V. (2001). Changes induced by malathion, methylparathion and parathion on membrane lipid physiolchemical properties correlate with their toxicity. Biochem. Biophys. Acta-Biomembranes 1511, 360-8.Google Scholar
  118. Voccia, I., Blakley, B., Brousseau, P. and Fournier, M. (1999). Immunotoxicity of pesticides: a review. Toxicol. Indust. Health 15, 119-32.Google Scholar
  119. Vohr, H.W. and Ruhl-Fehlert, C. (2001). Industry experience in the identification of the immunotoxic potential of agrochemicals. Sci. Tot. Environ. 270, 123-33.Google Scholar
  120. Waddell, B.L., Zahm, S.H., Baris, D., Weisenburger, D.D., Holmes, F., Burmeister, L.F., Cantor, K.P. and Blair, A. (2001). Agricultural use of organophosphorous pesticides and the risk of non-Hodgkin's lymphoma among male farmers (United States). Cancer Causes Control 12, 509-17.Google Scholar
  121. Walker, C.H. (2001). Organic Pollutants, an Ecotoxicological Perspective. London: Taylor and Francis.Google Scholar
  122. Walker, C., Kaiser, K., Klein, W., Lagidic, L., Peakall, D., Sheffield, S., Soldan, T. and Yasuno, M. (1998). Alternative testing methodologies for ecotoxicology. Environ. Health Perspect. 106, 441-51.Google Scholar
  123. Waterhouse, J. and Tourney, T. (1984). The effects of organophosphorous and carbamate cholinesterase inhibitors on in vitro immune responses. Toxicologist 4, 159-64.Google Scholar
  124. Weeks, B.A., Anderson, D.P., DuFour, A.P., Fairbrother, A., Goven, A.J., Lahvis, G.P. and Peters, G. (1992). Immunological biomarkers to assess environmental stress. In R.J. Hugget et al. (eds) Biomarkers: Biological, Physical and Histological Markers of Anthropogenic Stress, pp. 211-34. Boca Raton, FA: Lewis Publishers.Google Scholar
  125. Weyts, F.A., Cohen, N., Flik, G. and Verburg van Kemenade, B. (1999). Interactions between the immune system and the hypothalamic-pituitary-interrenal axis in fish. Fish Shellfish Immunol. 9, 1-20.Google Scholar
  126. Wong, S., Fournier, M., Coderre, D., Banska, W. and Krzystyniak, K. (1992). Environmental immunotoxicology. In D. Peakall (ed.) Animal Biomarkers as Pollution Indicators pp. 167-89. London: Chapman and Hall.Google Scholar
  127. Woodwell, G.M., Wurster, C.F.Jr and Isaacson, P.A. (1967). DDT residues in an east coast estuary: a case of biological concentration of a persistent insecticide. Science 156, 821-4.Google Scholar
  128. Zaida, S., Bhatnagar, V., Gandhi, S., Shah, M., Kulkarni, P. and Saiyed, H. (2000). Assessment of thyroid function in pesticide formulators. Hum. Exp. Toxicol. 19, 497-501.Google Scholar
  129. Zaruk, D., Comba, M., Struger, J. and Young, S. (2001). Comparison of immunoassay with a conventional method for the determination of diazinon in surface waters. Analytica Chimica Acta 444, 163-8.Google Scholar
  130. Zelikoff, J.T. (1998). Biomarkers of immunotoxicity in fish and other non-mammalian sentinel species: predictive value for mammals? Toxicology 129, 63-71.Google Scholar
  131. Zelikoff, J.T., Raymond, A., Carlson, E., Li, Y., Beaman, J.R. and Anderson, M. (2000). Biomarkers of immunotoxicity in fish: from the lab to the ocean. Toxicol. Lett. 112, 325-31.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  1. 1.Plymouth Environmental Research CentreUniversity of PlymouthPlymouthUK

Personalised recommendations