Leprosy – clues about the biochemistry of Mycobacterium leprae and its host-dependency from the genome

  • Paul R. Wheeler


Deletions and the appearance of pseudogenes in pathways of carbon source utilisation and energy metabolism best explain the host-dependency and failure to culture Mycobacterium leprae axenically. From the genome sequence it is possible to predict that acetate and galactose cannot be used as carbon sources, while pyruvate can only be catabolised. Glycerol, glucose, and fatty acids could be used for glycolysis, the pentose cycle and β-oxidation which are complete. Retrospective functional genomics – interpreting work before the completion of the genome project – supports the failure of M. leprae to use acetate as well as another prediction that metabolic flux from pyruvate to acetyl-CoA would be very low. However, the loss of a second icd gene (compared with M. tuberculosis), predicted to encode isocitrate dehydrogenase, did not diminish the specific activity of the enzyme. The genes for respiratory pathways are extremely limited, being present for oxidative phosphorylation as a result of electron transport only using FADH as an electron donor. In contrast, all the major biosynthetic pathways are complete except that M. leprae is a natural methionine auxotroph: this is predicted not to be attenuating, or explain host-dependency since methionine would be present in ‘rich’ culture media.

Leprosy Loss of paralogous genes in carbon metabolism Loss of paralogous genes in Mycobacterium leprae Microaerophilic niche for Mycobacterium leprae Muller's Ratchet Pseudogenes accumulation of in the Mycobacterium leprae genome Requirements for axenic culture of Mycobacterium leprae 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Argyrou, A. & Blanchard, J.S. 2001 Mycobacterium tuberculosis lipoamide dehydrogenase is encoded by Rv0462 and not by the lpdA or lpdB genes. Biochemistry 40, 11,353-11,363.Google Scholar
  2. Belisle, J.T., Vissa, V.D., Sievert, T., Takayama, K., Brennan, P.J. & Besra, G.S. 1997 Role of the major antigen of Mycobacterium tuberculosis in cell wall biogenesis. Science 276, 1420-1422.Google Scholar
  3. Bloch, K. 1977 Control mechanisms for fatty acid synthesis in Mycobacterium smegmatis. Advances in Enzymology and Related Areas of Molecular Biology 45, 1-84.Google Scholar
  4. Brennan, P.J. & Nikaido, H. 1995 The envelope of mycobacteria. Annual Review of Biochemistry 64, 29-63.Google Scholar
  5. Brennan, P.J. & Vissa, V.D. 2001 Genomic evidence for the retention of the essential mycobacterial cell wall in the otherwise defective Mycobacterium leprae. Leprosy Review 72, 415-428.Google Scholar
  6. Brodie, A.F. & Gutnick, D.L. 1972 Electron transport and oxidative phosphorylation in microbial systems. In Electron andCoupled Energy Transfer Systems, eds. King, T.E. & Klingenberg, M. pp. 599-681. New York, USA: M. Dekker Inc.Google Scholar
  7. Bryk, R., Lima, C.D., Erdjument-Bromage, H., Tempst, P. & Nathan, C. 2002 Metabolic enzymes of mycobacteria linked to antioxidant defense by a thioredoxin-like protein. Science 295, 1073-1077.Google Scholar
  8. Camacho, L.R., Ensergueix, D., Perez, E., Gicquel, B. & Guilhot, C. 1999 Identification of a virulence gene cluster of Mycobacterium tuberculosis by signature-tagged transposon mutagenesis. Molecular Microbiology 34, 257-267.Google Scholar
  9. Chatterjee, D. & Khoo, K.H. 1998 Mycobacterial lipoarabinomannan: an extraordinary lipoheteroglycan with profound physiological effects. Glycobiology 8, 113-120.Google Scholar
  10. Choi, K.H., Kremer, L., Besra, G.S. & Rock, C.O. 2000 Identification and substrate specificity of beta-ketoacyl (acyl carrier protein) synthase III (mtFabH) from Mycobacterium tuberculosis. Journal of Biological Chemistry 275, 28,201-28,207.Google Scholar
  11. Cole, S.T., Brosch, R., Parkhill, J., Garnier, T., Churcher, C., Harris, D., Gordon, S.V., Eiglmeier, K., Gas, S., Barry III, C.E., Tekaia, F., Badcock, K., Basham, D., Brown, D., Chillingworth, T., Connor, R., Davies, R., Devlin, K., Feltwell, T., Gentles, S., Hamlin, N., Holroyd, S., Hornsby, T., Jagels, K., Barrell, B.G. et al. 1998 Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence (see comments) [published erratum appears in Nature 1998 Nov 12; 396(6707): 190]. Nature 393, 537-544.Google Scholar
  12. Cole, S.T., Eiglmeier, K., Parkhill, J., James, K.D., Thomson, N.R., Wheeler, P.R., Honore, N., Garnier, T., Churcher, C., Harris, D., Mungall, K., Basham, D., Brown, D., Chillingworth, T., Connor, R., Davies, R.M., Devlin, K., Duthoy, S., Feltwell, T., Fraser, A., Hamlin, N., Holroyd, S., Hornsby, T., Jagels, K., Lacroix, C., Maclean, J., Moule, S., Murphy, L., Oliver, K., Quail, M.A., Rajandream, M.A., Rutherford, K.M., Rutter, S., Seeger, K., Simon, S., Simmonds, M., Skelton, J., Squares, R., Squares, S., Stevens, K., Taylor, K., Whitehead, S., Woodward, J.R. & Barrell, B.G. 2001. Massive gene decay in the leprosy bacillus. Nature 409, 1007-1011.Google Scholar
  13. Colston, M.J., Hilson, G.R. & Banerjee, D.K. 1978 The 'proportional bactericidal test' a method for assessing bactericidal activity in drugs against Mycobacterium leprae in mice. Leprosy Review 49, 7-15.Google Scholar
  14. Constant, P., Perez, E., Malaga, W., Laneelle, M.A., Saurel, O., Daffe, M. & Guilhot, C. 2002 Role of the pks15/1 gene in the biosynthesis of phenolic glycolipids in the Mycobacterium tuberculosis complex. Evidence that all strains synthesize glycosylated p-hydroxybenzoic methyl esters and that strains devoid of phenolic glycolipid harbor a frameshift mutation in the pks15/1 gene. Journal of Biological Chemistry 277, 38,148-38,158.Google Scholar
  15. Convit, J., Sampson, C., Zuniga, M., Smith, P.G., Plata, J., Silva, J., Molina, J., Pinardi, M.E., Bloom, B.R. & Salgado, A. 1992 Immunoprophylactic trial with combined Mycobacterium leprae/BCG vaccine against leprosy: preliminary results. Lancet 339, 446-450.Google Scholar
  16. Cox, J.S., Chen, B., McNeil, M. & Jacobs, W.R. Jr. 1999 Complex lipid determines tissue-specific replication of Mycobacterium tuberculosis in mice. Nature 402, 79-83.Google Scholar
  17. Dawes, S.S. & Mizrahi, V. 2001 DNA metabolism in Mycobacterium leprae. Leprosy Review 72, 408-414.Google Scholar
  18. Deretic, V., Philipp, W., Dhandayuthapani, S., Mudd, M.H., Curcic, R., Garbe, T., Heym, B., Via, L.E. & Cole, S.T. 1995 Mycobacterium tuberculosis is a natural mutant with an inactivated oxidative-stress regulatory gene: implications for sensitivity to isoniazid. Molecular Microbiology 17, 889-900.Google Scholar
  19. Dhariwal, K.R., Yang, Y.M., Fales, H.M. & Goren, M.B. 1987 Detection of trehalose monomycolate in Mycobacterium leprae grown in armadillo tissues. Journal of General Microbiology 133, 201-209.Google Scholar
  20. Draper, P., Dobson, G., Minnikin, D.E. & Minnikin, S.M. 1982 The mycolic acids of Mycobacterium leprae harvested from experimentally infected nine-banded armadillos. Annales de Microbiologie (Paris) 133, 39-47.Google Scholar
  21. Ell, S.R. 1986 Leprosy and social class in the Middle Ages. International Journal of Leprosy and Other Mycobacterial Diseases 54, 300-305.Google Scholar
  22. Fairlamb, A.H. 1989 Novel biochemical pathways in parasitic protozoa. Parasitology 99, S93-S112.Google Scholar
  23. Ganapati, R. & Revankar, C.R. 1989 Clinical aspects of leprosy. In The Biology of the Mycobacteria, eds. Ratledge, C., Stanford, J. & Grange, G. London: Academic Press.Google Scholar
  24. Gennis, R.B. & Stewart, V. 1996 Respiration. In Eschericia coli and Salmonella.Cellular andmolecular biology, Neidhardt, F.C. pp. 217-261. Washington, DC, USA: ASM Press.Google Scholar
  25. George, K.M., Yuan, Y., Sherman, D.R. & Barry III, C.E., 1995 The biosynthesis of cyclopropanated mycolic acids in Mycobacterium tuberculosis. Identification and functional analysis of CMAS-2. Journal of Biological Chemistry 270, 27,292-27,298.Google Scholar
  26. Glickman, M.S., Cahill, S.M. & Jacobs, W.R. Jr. 2001 The Mycobacterium tuberculosis cmaA2 gene encodes a mycolic acid transcyclopropane synthetase. Journal of Biological Chemistry 276, 2228-2233.Google Scholar
  27. Glickman, M.S., Cox, J.S. & Jacobs, W.R. Jr. 2000 A novel mycolic acid cyclopropane synthetase is required for cording, persistence, and virulence of Mycobacterium tuberculosis. Molecular Cell 5, 717-727.Google Scholar
  28. Gold, B., Rodriguez, G.M., Marras, S.A., Pentecost, M. & Smith, I. 2001 The Mycobacterium tuberculosis IdeR is a dual functional regulator that controls transcription of genes involved in iron acquisition, iron storage and survival in macrophages. Molecular Microbiology 42, 851-865.Google Scholar
  29. Goodfellow, M. & Magee, J.G. 1998 Taxonomy of mycobacteria. In Mycobacteria-Basic Aspects, eds. Gangadarham, P.R. & Jenkins, P.A. pp. 1-71. New York, USA: Thomson Science.Google Scholar
  30. Grange, G. 1989 Mycobacterial disease in the world: yesterday, today and tomorrow. In The Biology of the Mycobacteria volume 3, eds. Ratledge, C., Stanford, J. & Grange, G. pp. 3-36. London: Academic Press.Google Scholar
  31. Grant, K.A., Belandia, I.U., Dekker, N., Richardson, P.T. & Park, S.F. 1997 Molecular characterization of pldA, the structural gene for a phospholipase A from Campylobacter coli, and its contribution to cell-associated lysis. Infection and Immunity 65, 1172-1180.Google Scholar
  32. Hall, R.M., Wheeler, P.R. & Ratledge, C. 1983 Exochelin-mediated iron uptake into Mycobacterium leprae. International Journal of Leprosy and Other Mycobacterial Diseases 51, 490-494.Google Scholar
  33. Hunter, S.W. & Brennan, P.J. 1981 A novel phenolic glycolipid from Mycobacterium leprae possibly involved in immunogenicity and pathogenicity. Journal of Bacteriology 147, 728-735.Google Scholar
  34. Ishaque, M. & Kato, L. 1977 Oxidation of various substrates by host grown Mycobacteria leprae and M. lepraemurium. Revue Canadienne de Biologie 36, 277-282.Google Scholar
  35. Minnikin, D.E. 1982 Lipids: complex lipids, their chemistry, biosynthesis and roles. In The Biology of the Mycobacteria volume 1, eds. Ratledge, C. & Stanford, J. pp. 95-184. London: Academic Press.Google Scholar
  36. Minnikin, D.E., Kremer, L., Dover, L.G. & Besra, G.S. 2002 The methyl-branched fortifications of Mycobacterium tuberculosis. Chemistry and Biology 9, 545-553.Google Scholar
  37. Moody, D.B., Besra, G.S., Wilson, I.A. & Porcelli, S.A. 1999 The molecular basis of CD1-mediated presentation of lipid antigens. Immunology Review 172, 285-296.Google Scholar
  38. Moran, N.A. 1996 Accelerated evolution and Muller's rachet in endosymbiotic bacteria. Proceedings of the National Academy of Science USA 93, 2873-2878.Google Scholar
  39. Mukhopadhyay, B., Concar, E.M. & Wolfe, R.S. 2001 A GTP-dependent vertebrate-type phosphoenolpyruvate carboxykinase from Mycobacterium smegmatis. Journal of Biological Chemistry 276, 16,137-16,145.Google Scholar
  40. Mukhopadhyay, B. & Purwantil, E. 2000 Pyruvate carboxylase from Mycobacterium smegmatis: stabilization, rapid purification, molecular and biochemical characterization and regulation at the cellular level. Biochimica et Biophysica Acta 1475, 191-206.Google Scholar
  41. Naafs, B. 1989 Reactions in Leprosy. In The Biology of the Mycobacteria volume 3, eds. Ratledge, C., Stanford, J. & Grange, J. pp. 359-404. London: Academic Press.Google Scholar
  42. Newton, G.L., Av-Gay, Y. & Fahey, R.C. 2000 N-Acetyl-1-D-myo-inosityl-2-amino-2-deoxy-alpha-D-glucopyranoside deacetylase (MshB) is a key enzyme in mycothiol biosynthesis. Journal of Bacteriology 182, 6958-6963.Google Scholar
  43. Ng, V., Zanazzi, G., Timpl, R., Talts, J.F., Salzer, J.L., Brennan, P.J. & Rambukkana, A. 2000 Role of the cell wall phenolic glycolipid-1 in the peripheral nerve predilection of Mycobacterium leprae. Cell 103, 511-524.Google Scholar
  44. Payne, S.N., Draper, P. & Rees, R.J. 1982 Serological activity of purified glycolipid from Mycobacterium leprae. International Journal of Leprosy and Other Mycobacterial Diseases 50, 220-221.Google Scholar
  45. Pessolani, M.C., Smith, D.R., Rivoire, B., McCormick, J., Hefta, S.A., Cole, S.T. & Brennan, P.J. 1994 Purification, characterization, gene sequence, and significance of a bacterioferritin from Mycobacterium leprae. Journal of Experimental Medicine 180, 319-327.Google Scholar
  46. Radolf, J.D., Steiner, B. & Shevchenko, D. 1999 Treponema pallidum: doinga remarkable job with what it's got. Trends in Microbiology 7, 7-9.Google Scholar
  47. Ramaprasad, P., Fernando, A., Madhale, S., Rao, J.R., Edward, V.K., Samson, P.D., Klatser, P.R., de Wit, M.Y., Smith, W.C. & Cree, I.A. 1997 Transmission and protection in leprosy: indications of the role of mucosal immunity. Leprosy Review 68, 301-315.Google Scholar
  48. Rambukkana, A., Zanazzi, G., Tapinos, N. & Salzer, J.L. 2002 Contact-dependent demyelination by Mycobacterium leprae in the absence of immune cells. Science 296, 927-931.Google Scholar
  49. Ratledge, C. 1982 Lipids: cell composition, fatty acid biosynthesis. In The Biology of the Mycobacteria volume 1, eds. Ratledge, C. & Stanford, J. pp. 53-94. London: Academic Press.Google Scholar
  50. Ratledge, C. 1999 Iron Metabolism. In Mycobacteria.Molecular Biology and Virulence, eds. Ratledge, C. & Dale, J. pp. 260-286. Oxford: Blackwell Science.Google Scholar
  51. Ratledge, C. & Dover, L.G. 2000 Iron metbolism in pathogenic bacteria. Annual Review of Microbiology 54, 881-941.Google Scholar
  52. Shepard, C.C. 1971 The first decade in experimental leprosy. Bulletin of the World Health Organization 44, 821-827.Google Scholar
  53. Sirakova, T.D., Thirumala, A.K., Dubey, V.S., Sprecher, H. & Kolattukudy, P.E. 2001 The Mycobacterium tuberculosis pks2 gene encodes the synthase for the hepta-and octamethyl-branched fatty acids required for sulfolipid synthesis. Journal of Biological Chemistry 276, 16,833-16,839.Google Scholar
  54. Smith, D.A., Parish, T., Stoker, N.G. & Bancroft, G.J. 2001 Characterization of auxotrophic mutants of Mycobacterium tuberculosis and their potential as vaccine candidates. Infection and Immunity 69, 1142-1150.Google Scholar
  55. Sritharan, V., Wheeler, P.R. & Ratledge, C. 1990 Aspartate metabolism in Mycobacterium avium grown in host tissue and axenically and in Mycobacterium leprae. Journal of General Microbiology 136, 203-209.Google Scholar
  56. Sun, W., Williams, C.H. Jr. & Massey, V. 1997 The role of glycine 99 in L-lactate monooxygenase from Mycobacterium smegmatis. Journal of Biological Chemistry 272, 27,065-27,076.Google Scholar
  57. Waters, M.F.R. 1989 The chemotherapy of leprosy. In The Biology of the Mycobacteria volume 3, eds. Ratledge, C., Stanford, J. & G. Grange. pp. 405-474. London: Academic Press.Google Scholar
  58. Wheeler, P.R. 1984 Oxidation of carbon sources through the tricarboxylic acid cycle in Mycobacterium leprae grown in armadillo liver. Journal of General Microbiology 130, 381-389.Google Scholar
  59. Wheeler, P.R. 1986 Enzymes and other biochemically active components of mycobacteria. Leprosy Review 57 (Suppl 2), 21-32.Google Scholar
  60. Wheeler, P.R. 1987a Biosynthesis and scavenging of purines by pathogenic mycobacteria including Mycobacterium leprae. Journal of General Microbiology 133, 2999-3011.Google Scholar
  61. Wheeler, P.R. 1987b Enzymes for purine synthesis and scavenging in pathogenic mycobacteria and their distribution in Mycobacterium leprae. Journal of General Microbiology 133, 3013-3018.Google Scholar
  62. Wheeler, P.R. 1990 Recent research into the physiology of Mycobacterium leprae. Advances in Microbial Physiology 31, 71-124.Google Scholar
  63. Wheeler, P.R. 1994 Conference report:14th International Leprosy Congress. Alternatives to Animal Research 22, 54-55.Google Scholar
  64. Wheeler, P.R. 2001a The microbial physiologist's guide to the leprosy genome. Leprosy Review 72, 399-407.Google Scholar
  65. Wheeler, P.R. 2001b Understanding the physiology of difficult, pathogenic bacteria from analysis of their genome sequences. Journal of Medical Microbiology 51, 1-4.Google Scholar
  66. Wheeler, P.R. & Gregory, D. 1980 Superoxide dismutase, peroxidatic activity and catalase in Mycobacterium leprae purified from armadillo liver. Journal of General Microbiology 121, 457-464.Google Scholar
  67. Wheeler, P.R. & Ratledge, C. 1988 Use of carbon sources for lipid biosynthesis in Mycobacterium leprae: a comparison with other pathogenic mycobacteria. Journal of General Microbiology 134, 2111-2121.Google Scholar
  68. Wheeler, P.R. & Ratledge, C. 1991 Phospholipase activity of Mycobacterium leprae harvested from experimentally infected armadillo tissue. Infection and Immunity 59, 2781-2789.Google Scholar
  69. Wheeler, P.R. & Ratledge, C. 1994 Metabolism of Mycobacterium tuberculosis. In Tuberculosis.Pathogenesis, Protection and Control, eds. Bloom, B.R. pp. 353-388. Washington, DC, USA: ASM Press.Google Scholar
  70. Wooff, E., Michell, S.L., Gordon, S.V., Chambers, M.A., Bardarov, S., Jacobs, W.R. Jr., Hewinson, R.G. & Wheeler, P.R. 2002 Functional genomics reveals the sole sulphate transporter of the Mycobacterium tuberculosis complex and its relevance to the acquisition of sulphur in vivo. Molecular Microbiology 43, 653-663.Google Scholar
  71. Young, D.B. 2001 Leprosy lipid provides the key to Schwann cell entry. Trends in Microbiology 9, 52-54.Google Scholar
  72. Yu, S., Fiss, E. & Jacobs, W.R. Jr. 1998 Analysis of the exochelin locus in Mycobacterium smegmatis: biosynthesis genes have homology with genes of the peptide synthetase family. Journal of Bacteriology 180, 4676-4685.Google Scholar
  73. Yuan, Y., Lee, R.E., Besra, G.S., Belisle, J.T. & Barry III, C.E., 1995 Identification of a gene involved in the biosynthesis of cyclopropanated mycolic acids in Mycobacterium tuberculosis. Proceedings of the National Academy of Science USA 92, 6630-6634.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • Paul R. Wheeler
    • 1
  1. 1.Tuberculosis Research Unit, Department of Bacterial Diseases, Veterinary Laboratories Agency (Weybridge)New HawUK;Tel.:

Personalised recommendations