Journal of Clinical Immunology

, Volume 23, Issue 2, pp 119–131

IL-4 Expression Delays Eosinophil-Independent Vasculopathy and Fibrosis During Allograft Rejection in the Mouse

  • Edda M. Roberts
  • De Shon Hall
  • Sharon Ferguson
  • Susan Minson
  • Joanna D. Davies
Article
  • 30 Downloads

Abstract

Transplant vasculopathy in the mouse is thought to be dependent on IL-4 and mediated by IL-5 and eosinophils, whereas in the rat and human systems, IL-4 is associated with the absence of transplant vasculopathy and down-regulation of a Th1-type response. In this study we tested the possibility that the apparent difference in the role of IL-4 in transplant vasculopathy is related to protocol differences rather than to the species being studied. Using a protocol that closely resembles that used in rat and human studies, we developed a model of transplant vasculopathy in the mouse that is associated with Th1-type cytokines and independent of IL-5 and eosinophil infiltration. In this model IL-4 promotes a significant delay in vasculopathy in the graft (P = 0.04) and a decrease in the incidence of allograft rejection (P = 0.02). The data suggest that the role of IL-4 in transplant vasculopathy can be controlled by the protocol used to treat the transplant recipient.

Transplantation vasculopathy MHC Th1/Th2 cells cytokines 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    Mosmann TR, Cherwinski H, Bond MW, Giedlin MA, Coffman RL: Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins. J Immunol 136:2348–2357, 1986Google Scholar
  2. 2.
    Sher A, Coffman RL: Regulation of immunity to parasites by T cells and T cell-derived cytokines. Annu Rev Immunol 10:385–409, 1992Google Scholar
  3. 3.
    Abbas AK, Murphy KM, Sher A: Functional diversity of helper T lymphocytes. Nature 383:787–793, 1996Google Scholar
  4. 4.
    Romagnani S: Human TH1 and TH2 subsets: Doubt no more. Im-munol Today 12:256–257, 1991Google Scholar
  5. 5.
    VanBuskirk AM, Wakely ME, Orosz, CG: Transfusion of polarized TH2-like cell populations into SCID mouse cardiac allograft recipi-ents results in acute allograft rejection. Transplantation 62:229–238, 1996Google Scholar
  6. 6.
    Barbara JA, Turvey SE, Kingsley CI, Spriewald BM, Hara M, Witzke O, Morris PJ. Wood KJ: Islet allograft rejection can be mediated by CD4+, alloantigen experienced, direct pathway T cells of TH1 and TH2 cytokine phenotype. Transplantation 70:1641–1649, 2000Google Scholar
  7. 7.
    Maliszewski CR, Morrissey PJ, Fanslow WC, Sato TA, Willis C, Davison B: Delayed allograft rejection in mice transgenic for a sol-uble form of the IL-4 receptor. Cell Immunol 143:434–438, 1992Google Scholar
  8. 8.
    Fanslow WC, Clifford KN, Park LS, Rubin AS, Voice RF, Beckmann MP, Widmer MB: Regulation of alloreactivity in vivo by IL-4 and the soluble IL-4 receptor. J Immunol 147:535–540, 1991Google Scholar
  9. 9.
    Le Moine A, Flamand V, Demoor FX, Noel JC, Surquin M, Kiss R, Nahori MA, Pretolani M, Goldman M, Abramowicz D: Critical roles for IL-4, IL-5, and eosinophils in chronic skin allograft rejection. J Clin Invest 103:1659–1667, 1999Google Scholar
  10. 10.
    Ensminger SM, Spriewald BM, Sorensen HV, Witzke O, Flashman EG, Bushell A, Morris PJ, Rose ML, Rahemtulla A, Wood KJ: Crit-ical role for IL-4 in the development of transplant arteriosclerosis in the absence of CD40-CD154 costimulation. J Immunol 167:532–541, 2001Google Scholar
  11. 11.
    Davies JD, Martin G, Phillip J, Marshall SE, Cobbold SP, Waldmann H: T cell regulation in adult transplantation tolerance. J Immunol 157:529–533, 1996Google Scholar
  12. 12.
    Bushell A, Niimi M, Morris PJ, Wood KJ: Evidence for immune reg-ulation in the induction of transplantation tolerance: A conditional but limited role for IL-4. J Immunol 162:1359–1366, 1999Google Scholar
  13. 13.
    He XY, Chen J, Verma N, Plain K, Tran G, Hall BM: Treatment with interleukin-4 prolongs allogeneic neonatal heart graft survival by inducing T helper 2 responses. Transplantation 65:1145–1152, 1998Google Scholar
  14. 14.
    Levy AE, Alexander JW: Administration of intragraft interleukin-4 prolongs cardiac allograft survival in rats treated with donor-specific transfusion/cyclosporine. Transplantation 60:405–406, 1995Google Scholar
  15. 15.
    Waaga AM, Gasser M, Eist-van Holthe J, Najafian N, Muller A, Vella JP, Womer KL, Chandraker A, Khoury S, Sayegh M: Regulatory functions of self-restricted MHC class II allopeptide-specific Th2 clones in vivo. J Clin Invest 107:909–916, 2001Google Scholar
  16. 16.
    Maeda H, Takata M, Takahashi S, Ogoshi S, Fujimoto S: Adoptive transfer of a Th2-like cell line prolongs MHC Class II antigen dis-parate skin allograft survival in the mouse. Int Immunol 6:855–862, 1994Google Scholar
  17. 17.
    Holthe JE, Gasser M, Womer K, Najafian N, Dong V, Samsonov DV, Geehan CS, Chandraker A, Sayegh MH, Waaga AM: Regula-tory functions of alloreactive Th2 clones in human renal transplant recipients. Kidney Int 62:627–631, 2002Google Scholar
  18. 18.
    Stepkowski SM, Kirken RA, Trawick BW, Wang M, Tejpal N, Wang ME, Tian L, Clark J, Kahan BD: Allochimeric class I MHC protein-induced tolerance by partial TCR engagement requires activation of both CTL4-and common gamma-chain-dependent cytokine signals. Transplantation 73:1227–1235, 2002Google Scholar
  19. 19.
    Cobbold SP, Jayasuriya A, Nash A, Prospero TD, Waldmann H: Therapy with monoclonal antibodies by elimination of T-cell subsets in vivo. Nature 312:548–551, 1984Google Scholar
  20. 20.
    Leo O, Foo M, Sachs DH, Samelson LE, Bluestone JA: Identification of a monoclonal antibody specific for a murine T3 polypeptide. Proc Natl Acad Sci USA 84:1374–1378, 1987Google Scholar
  21. 21.
    Ledbetter JA, Herzenberg LA: Xenogeneic monoclonal antibodies to mouse lymphoid differentiation antigens. Immunol Rev 47:63–90, 1979Google Scholar
  22. 22.
    Spitalny GL, Havell EA: Monoclonal antibody to murine gamma interferon inhibits lymphokine-induced antiviral and macrophage tumoricidal activities. J Exp Med 159:1560–1565, 1984Google Scholar
  23. 23.
    Ohara J, Paul WE: Production of a monoclonal antibody to and molecular characterization of B-cell stimulatory factor-1. Nature 315:333–336, 1985Google Scholar
  24. 24.
    Hao L, Wang Y, Gill RG, Lafferty KJ: Role of the L3T4+ T cell in allograft rejection. J Immunol 139:4022–4026, 1987Google Scholar
  25. 25.
    O'Connor E, Roberts E, Davies JD: Amplification of cytokine-specific ELISAs increases the sensitivity of detection to 5–20 picograms per milliliter. J Immunol Methods 229:155–160, 1999Google Scholar
  26. 26.
    Mueller R, Davies JD, Krahl T, Sarvetnick N: Interleukin-4 expres-sion by grafts from transgenic mice fails to prevent allograft rejec-tion. J Immunol 159:1599–1603, 1997Google Scholar
  27. 27.
    Peto R, Pike MC, Armitage P, Breslow NE, Cox DR, Howard SV, Mantel N, McPherson K, Peto J, Smith PG: Design and analy-sis of randomized clinical trials requiring prolonged observation of each patient. II. Analysis and examples. Br J Cancer 35:1–39, 1977Google Scholar
  28. 28.
    Cobbold SP, Adams E, Marshall S, Davies JD, Waldmann H: Mech-anisms of peripheral tolerance. Immunol Rev 149:5–33, 1996Google Scholar
  29. 29.
    Davies JD, O'Connor E, Hall D, Krahl T, Trotte J, Sarvetnick N: CD4C CD45RB low-density cells from untreated mice prevent acute allograft rejection. J Immunol 163:5353–535, 1999Google Scholar
  30. 30.
    Hara M, Kingsley CL, Niimi M, Read S, Turvey SE, Bushell AR, Morris PJ, Powrie F, Wood KJ: IL-10 is required for regulatory T cells to mediate tolerance to alloantigens in vivo. J Immunol 166:3789–3796, 2001Google Scholar
  31. 31.
    Seddon B, Mason D: Regulatory T cells in the control of autoim-munity: The essential role of transforming growth factor ß and in-terleukin 4 in the prevention of autoimmune thyroiditis in rats by peripheral CD4+ CD45R- cells and CD4+ CD8- thymocytes. J Exp Med 189:279–288, 1999Google Scholar
  32. 32.
    Powrie F, Leach MW, Mauze S, Caddle LB, Coffman RL: Pheno-typically distinct subsets of CD4+T cells induce or protect from chronic intestinal inflammation in C.B-17 scid mice. Int Immunol 5:1461–1471, 1993Google Scholar
  33. 33.
    Morrissey PJ, Charrier K, Braddy S, Liggitt D, Watson JD: CD4+ T cells that express high levels of CD45RB induce wasting disease when transferred into congenic severe combined immunodeficient mice. Disease development is prevented by cotransfer of purified CD4+ T cells. J Exp Med 178:237–244, 1993Google Scholar
  34. 34.
    Powrie F, Correa-Oliveira R, Mauze S, Coffman RL: Regulatory interactions between CD45RB high and CD45RB lowCD4+ T cells are important for the balance between protective and pathogenic cell-mediated immunity. J Exp Med 179:589–600, 1994Google Scholar
  35. 35.
    Groux H, O'Garra A, Bigler M, Rouleau M, Antonenko S, deVries JE, Roncarolo MG: A CD4+ T-cell subset inhibits antigen-specific T-cell responses and prevents colitis. Nature 389:737–742, 1997Google Scholar
  36. 36.
    Fowell D, McKnight AJ, Powrie F, Dyke R, Mason D: Subsets of CD4 C T cells and their roles in the induction and prevention of autoimmunity. Immunol Rev 123:37–64, 1991Google Scholar
  37. 37.
    Fowell D, Mason D: Evidence that the T cell repertoire of normal rats contains cells with the potential to cause diabetes: characterization of the CD4+T cell subsets that inhibits this autoimmune potential. J Exp Med 177:627–636, 1993Google Scholar
  38. 38.
    Fukushi J, Ono M, Morikawa W, Iwamoto Y, Kuwano M: The ac-tivity of soluble VCAM-1 in angiogenesis stimulated by IL-4 and IL-13. J Immunol 165:2818–2823, 2000Google Scholar
  39. 39.
    Fukushi J, Morisaki T, Shono T, Nishie A, Torisu H, Ono M, Kuwano M: Novel biological functions of interleukin-4: Formation of tube-like structures by vascular endothelial cells in vitro and an-giogenesis in vivo. Biochem Biophys Res Commun 250:444–448, 1998Google Scholar
  40. 40.
    Melter M, Reinders ME, Sho M, Pal S, Geehan C, Denton MD, Mukhopadhyay D, Briscoe DM: Ligation of CD40 induces the ex-pression of vascular endothelial growth factor by endothelial cells and monocytes and promotes angiogenesis in vivo. Blood 96:3801–3808, 2000Google Scholar
  41. 41.
    Braun MY, Desalle F, Le Moine A, Pretolani M, Matthys P, Kiss R, Goldman M: IL-5 and eosinophils mediate the rejection of fully histoincompatible vascularized cardiac allografts: Regulatory role of alloreactive CD8(+) T lymphocytes and IFN-gamma. Eur J Immunol 30:1290–1296, 2000Google Scholar
  42. 42.
    Stein M, Keshav S, Harris N Gordon S: Interleukin 4 potently en-hances murine macrophage mannose receptor activity: A marker of alternative immunologic macrophage activation. J Exp Med 176:287–292, 1992Google Scholar
  43. 43.
    Montaner LJ, da Silva RP, Sun J, Sutterwala S, Hollinshead M, Vaux D, Gordon S: Type 1 and type 2 cytokine regulation of macrophage endocytosis: Differential activation by IL-4/IL-13 as opposed to IFN-gamma or IL-10. J Immunol 162:4606–4613, 1999Google Scholar
  44. 44.
    Kluth DC, Ainslie CV, Pearce WP, Finlay S, Clarke D, Anegon I Rees AJ: Macrophages transfected with adenovirus to express IL-4 reduce inflammation in experimental glomerulonephritis. J Immunol 166:4728–4236, 2001Google Scholar
  45. 45.
    Goerdt S, Orfanos CE: Other functions, other genes: Alternative activation of antigen-presenting cells. Immunity 10:137–142, 1999Google Scholar
  46. 46.
    Hodgkin PD, Basten A: B cell activation, tolerance and antigen-presenting function. Curr Opin Immunol 7:121–129, 1995Google Scholar
  47. 47.
    Masurier C, Pioche-Durieu C, Colombo BM, Lacave R, Lemoine FM, Klatzmann D, Guigon M: Immunophenotypical and functional heterogeneity of dendritic cells generated from murine bone marrow cultured with different cytokine combinations: Implications for anti-tumoral cell therapy. Immunology 96:569–577, 1999Google Scholar
  48. 48.
    King C, Mueller Hoenger R, Malo Cleary M, Murali-Krishna K, Ahmed R, King E, Sarvetnick N: Interleukin-4 acts at the locus of the antigen-presenting dendritic cell to counter-regulate cytotoxic CD8+ T-cell responses. Nat Med 7:206–214, 2001Google Scholar
  49. 49.
    Sharif S, Arreaza GA, Zucker P, Delovitch TL: Regulatory natural killer cells protect against spontaneous and recurrent type I diabetes. Ann NY Acad Sci 958:77–88, 2002Google Scholar
  50. 50.
    Poulton LD, Baxter AG: Clinical application of NKTcell asays to the prediction of type I diabetes. Diabetes Metab Res Rev 17:429–435, 2002Google Scholar
  51. 51.
    Singh AK, Wilson MT, Hong S, Olivares-Villagomez D, Du C, Stanic AK, Joyce S, Sritam S, Koezuka Y, Van Kaer L: Natural killer T cell activation protects mice against experimental autoim-mune encephalomyelitis. J Exp Med 194:1801–1811, 2001Google Scholar

Copyright information

© Plenum Publishing Corporation 2003

Authors and Affiliations

  • Edda M. Roberts
    • 1
  • De Shon Hall
    • 1
  • Sharon Ferguson
    • 1
  • Susan Minson
    • 1
  • Joanna D. Davies
    • 1
  1. 1.Department of Immunology, IMM-23The Scripps Research InstituteLa Jolla

Personalised recommendations