Journal of Clinical Immunology

, Volume 23, Issue 2, pp 119–131

IL-4 Expression Delays Eosinophil-Independent Vasculopathy and Fibrosis During Allograft Rejection in the Mouse

  • Edda M. Roberts
  • De Shon Hall
  • Sharon Ferguson
  • Susan Minson
  • Joanna D. Davies


Transplant vasculopathy in the mouse is thought to be dependent on IL-4 and mediated by IL-5 and eosinophils, whereas in the rat and human systems, IL-4 is associated with the absence of transplant vasculopathy and down-regulation of a Th1-type response. In this study we tested the possibility that the apparent difference in the role of IL-4 in transplant vasculopathy is related to protocol differences rather than to the species being studied. Using a protocol that closely resembles that used in rat and human studies, we developed a model of transplant vasculopathy in the mouse that is associated with Th1-type cytokines and independent of IL-5 and eosinophil infiltration. In this model IL-4 promotes a significant delay in vasculopathy in the graft (P = 0.04) and a decrease in the incidence of allograft rejection (P = 0.02). The data suggest that the role of IL-4 in transplant vasculopathy can be controlled by the protocol used to treat the transplant recipient.

Transplantation vasculopathy MHC Th1/Th2 cells cytokines 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Mosmann TR, Cherwinski H, Bond MW, Giedlin MA, Coffman RL: Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins. J Immunol 136:2348–2357, 1986Google Scholar
  2. 2.
    Sher A, Coffman RL: Regulation of immunity to parasites by T cells and T cell-derived cytokines. Annu Rev Immunol 10:385–409, 1992Google Scholar
  3. 3.
    Abbas AK, Murphy KM, Sher A: Functional diversity of helper T lymphocytes. Nature 383:787–793, 1996Google Scholar
  4. 4.
    Romagnani S: Human TH1 and TH2 subsets: Doubt no more. Im-munol Today 12:256–257, 1991Google Scholar
  5. 5.
    VanBuskirk AM, Wakely ME, Orosz, CG: Transfusion of polarized TH2-like cell populations into SCID mouse cardiac allograft recipi-ents results in acute allograft rejection. Transplantation 62:229–238, 1996Google Scholar
  6. 6.
    Barbara JA, Turvey SE, Kingsley CI, Spriewald BM, Hara M, Witzke O, Morris PJ. Wood KJ: Islet allograft rejection can be mediated by CD4+, alloantigen experienced, direct pathway T cells of TH1 and TH2 cytokine phenotype. Transplantation 70:1641–1649, 2000Google Scholar
  7. 7.
    Maliszewski CR, Morrissey PJ, Fanslow WC, Sato TA, Willis C, Davison B: Delayed allograft rejection in mice transgenic for a sol-uble form of the IL-4 receptor. Cell Immunol 143:434–438, 1992Google Scholar
  8. 8.
    Fanslow WC, Clifford KN, Park LS, Rubin AS, Voice RF, Beckmann MP, Widmer MB: Regulation of alloreactivity in vivo by IL-4 and the soluble IL-4 receptor. J Immunol 147:535–540, 1991Google Scholar
  9. 9.
    Le Moine A, Flamand V, Demoor FX, Noel JC, Surquin M, Kiss R, Nahori MA, Pretolani M, Goldman M, Abramowicz D: Critical roles for IL-4, IL-5, and eosinophils in chronic skin allograft rejection. J Clin Invest 103:1659–1667, 1999Google Scholar
  10. 10.
    Ensminger SM, Spriewald BM, Sorensen HV, Witzke O, Flashman EG, Bushell A, Morris PJ, Rose ML, Rahemtulla A, Wood KJ: Crit-ical role for IL-4 in the development of transplant arteriosclerosis in the absence of CD40-CD154 costimulation. J Immunol 167:532–541, 2001Google Scholar
  11. 11.
    Davies JD, Martin G, Phillip J, Marshall SE, Cobbold SP, Waldmann H: T cell regulation in adult transplantation tolerance. J Immunol 157:529–533, 1996Google Scholar
  12. 12.
    Bushell A, Niimi M, Morris PJ, Wood KJ: Evidence for immune reg-ulation in the induction of transplantation tolerance: A conditional but limited role for IL-4. J Immunol 162:1359–1366, 1999Google Scholar
  13. 13.
    He XY, Chen J, Verma N, Plain K, Tran G, Hall BM: Treatment with interleukin-4 prolongs allogeneic neonatal heart graft survival by inducing T helper 2 responses. Transplantation 65:1145–1152, 1998Google Scholar
  14. 14.
    Levy AE, Alexander JW: Administration of intragraft interleukin-4 prolongs cardiac allograft survival in rats treated with donor-specific transfusion/cyclosporine. Transplantation 60:405–406, 1995Google Scholar
  15. 15.
    Waaga AM, Gasser M, Eist-van Holthe J, Najafian N, Muller A, Vella JP, Womer KL, Chandraker A, Khoury S, Sayegh M: Regulatory functions of self-restricted MHC class II allopeptide-specific Th2 clones in vivo. J Clin Invest 107:909–916, 2001Google Scholar
  16. 16.
    Maeda H, Takata M, Takahashi S, Ogoshi S, Fujimoto S: Adoptive transfer of a Th2-like cell line prolongs MHC Class II antigen dis-parate skin allograft survival in the mouse. Int Immunol 6:855–862, 1994Google Scholar
  17. 17.
    Holthe JE, Gasser M, Womer K, Najafian N, Dong V, Samsonov DV, Geehan CS, Chandraker A, Sayegh MH, Waaga AM: Regula-tory functions of alloreactive Th2 clones in human renal transplant recipients. Kidney Int 62:627–631, 2002Google Scholar
  18. 18.
    Stepkowski SM, Kirken RA, Trawick BW, Wang M, Tejpal N, Wang ME, Tian L, Clark J, Kahan BD: Allochimeric class I MHC protein-induced tolerance by partial TCR engagement requires activation of both CTL4-and common gamma-chain-dependent cytokine signals. Transplantation 73:1227–1235, 2002Google Scholar
  19. 19.
    Cobbold SP, Jayasuriya A, Nash A, Prospero TD, Waldmann H: Therapy with monoclonal antibodies by elimination of T-cell subsets in vivo. Nature 312:548–551, 1984Google Scholar
  20. 20.
    Leo O, Foo M, Sachs DH, Samelson LE, Bluestone JA: Identification of a monoclonal antibody specific for a murine T3 polypeptide. Proc Natl Acad Sci USA 84:1374–1378, 1987Google Scholar
  21. 21.
    Ledbetter JA, Herzenberg LA: Xenogeneic monoclonal antibodies to mouse lymphoid differentiation antigens. Immunol Rev 47:63–90, 1979Google Scholar
  22. 22.
    Spitalny GL, Havell EA: Monoclonal antibody to murine gamma interferon inhibits lymphokine-induced antiviral and macrophage tumoricidal activities. J Exp Med 159:1560–1565, 1984Google Scholar
  23. 23.
    Ohara J, Paul WE: Production of a monoclonal antibody to and molecular characterization of B-cell stimulatory factor-1. Nature 315:333–336, 1985Google Scholar
  24. 24.
    Hao L, Wang Y, Gill RG, Lafferty KJ: Role of the L3T4+ T cell in allograft rejection. J Immunol 139:4022–4026, 1987Google Scholar
  25. 25.
    O'Connor E, Roberts E, Davies JD: Amplification of cytokine-specific ELISAs increases the sensitivity of detection to 5–20 picograms per milliliter. J Immunol Methods 229:155–160, 1999Google Scholar
  26. 26.
    Mueller R, Davies JD, Krahl T, Sarvetnick N: Interleukin-4 expres-sion by grafts from transgenic mice fails to prevent allograft rejec-tion. J Immunol 159:1599–1603, 1997Google Scholar
  27. 27.
    Peto R, Pike MC, Armitage P, Breslow NE, Cox DR, Howard SV, Mantel N, McPherson K, Peto J, Smith PG: Design and analy-sis of randomized clinical trials requiring prolonged observation of each patient. II. Analysis and examples. Br J Cancer 35:1–39, 1977Google Scholar
  28. 28.
    Cobbold SP, Adams E, Marshall S, Davies JD, Waldmann H: Mech-anisms of peripheral tolerance. Immunol Rev 149:5–33, 1996Google Scholar
  29. 29.
    Davies JD, O'Connor E, Hall D, Krahl T, Trotte J, Sarvetnick N: CD4C CD45RB low-density cells from untreated mice prevent acute allograft rejection. J Immunol 163:5353–535, 1999Google Scholar
  30. 30.
    Hara M, Kingsley CL, Niimi M, Read S, Turvey SE, Bushell AR, Morris PJ, Powrie F, Wood KJ: IL-10 is required for regulatory T cells to mediate tolerance to alloantigens in vivo. J Immunol 166:3789–3796, 2001Google Scholar
  31. 31.
    Seddon B, Mason D: Regulatory T cells in the control of autoim-munity: The essential role of transforming growth factor ß and in-terleukin 4 in the prevention of autoimmune thyroiditis in rats by peripheral CD4+ CD45R- cells and CD4+ CD8- thymocytes. J Exp Med 189:279–288, 1999Google Scholar
  32. 32.
    Powrie F, Leach MW, Mauze S, Caddle LB, Coffman RL: Pheno-typically distinct subsets of CD4+T cells induce or protect from chronic intestinal inflammation in C.B-17 scid mice. Int Immunol 5:1461–1471, 1993Google Scholar
  33. 33.
    Morrissey PJ, Charrier K, Braddy S, Liggitt D, Watson JD: CD4+ T cells that express high levels of CD45RB induce wasting disease when transferred into congenic severe combined immunodeficient mice. Disease development is prevented by cotransfer of purified CD4+ T cells. J Exp Med 178:237–244, 1993Google Scholar
  34. 34.
    Powrie F, Correa-Oliveira R, Mauze S, Coffman RL: Regulatory interactions between CD45RB high and CD45RB lowCD4+ T cells are important for the balance between protective and pathogenic cell-mediated immunity. J Exp Med 179:589–600, 1994Google Scholar
  35. 35.
    Groux H, O'Garra A, Bigler M, Rouleau M, Antonenko S, deVries JE, Roncarolo MG: A CD4+ T-cell subset inhibits antigen-specific T-cell responses and prevents colitis. Nature 389:737–742, 1997Google Scholar
  36. 36.
    Fowell D, McKnight AJ, Powrie F, Dyke R, Mason D: Subsets of CD4 C T cells and their roles in the induction and prevention of autoimmunity. Immunol Rev 123:37–64, 1991Google Scholar
  37. 37.
    Fowell D, Mason D: Evidence that the T cell repertoire of normal rats contains cells with the potential to cause diabetes: characterization of the CD4+T cell subsets that inhibits this autoimmune potential. J Exp Med 177:627–636, 1993Google Scholar
  38. 38.
    Fukushi J, Ono M, Morikawa W, Iwamoto Y, Kuwano M: The ac-tivity of soluble VCAM-1 in angiogenesis stimulated by IL-4 and IL-13. J Immunol 165:2818–2823, 2000Google Scholar
  39. 39.
    Fukushi J, Morisaki T, Shono T, Nishie A, Torisu H, Ono M, Kuwano M: Novel biological functions of interleukin-4: Formation of tube-like structures by vascular endothelial cells in vitro and an-giogenesis in vivo. Biochem Biophys Res Commun 250:444–448, 1998Google Scholar
  40. 40.
    Melter M, Reinders ME, Sho M, Pal S, Geehan C, Denton MD, Mukhopadhyay D, Briscoe DM: Ligation of CD40 induces the ex-pression of vascular endothelial growth factor by endothelial cells and monocytes and promotes angiogenesis in vivo. Blood 96:3801–3808, 2000Google Scholar
  41. 41.
    Braun MY, Desalle F, Le Moine A, Pretolani M, Matthys P, Kiss R, Goldman M: IL-5 and eosinophils mediate the rejection of fully histoincompatible vascularized cardiac allografts: Regulatory role of alloreactive CD8(+) T lymphocytes and IFN-gamma. Eur J Immunol 30:1290–1296, 2000Google Scholar
  42. 42.
    Stein M, Keshav S, Harris N Gordon S: Interleukin 4 potently en-hances murine macrophage mannose receptor activity: A marker of alternative immunologic macrophage activation. J Exp Med 176:287–292, 1992Google Scholar
  43. 43.
    Montaner LJ, da Silva RP, Sun J, Sutterwala S, Hollinshead M, Vaux D, Gordon S: Type 1 and type 2 cytokine regulation of macrophage endocytosis: Differential activation by IL-4/IL-13 as opposed to IFN-gamma or IL-10. J Immunol 162:4606–4613, 1999Google Scholar
  44. 44.
    Kluth DC, Ainslie CV, Pearce WP, Finlay S, Clarke D, Anegon I Rees AJ: Macrophages transfected with adenovirus to express IL-4 reduce inflammation in experimental glomerulonephritis. J Immunol 166:4728–4236, 2001Google Scholar
  45. 45.
    Goerdt S, Orfanos CE: Other functions, other genes: Alternative activation of antigen-presenting cells. Immunity 10:137–142, 1999Google Scholar
  46. 46.
    Hodgkin PD, Basten A: B cell activation, tolerance and antigen-presenting function. Curr Opin Immunol 7:121–129, 1995Google Scholar
  47. 47.
    Masurier C, Pioche-Durieu C, Colombo BM, Lacave R, Lemoine FM, Klatzmann D, Guigon M: Immunophenotypical and functional heterogeneity of dendritic cells generated from murine bone marrow cultured with different cytokine combinations: Implications for anti-tumoral cell therapy. Immunology 96:569–577, 1999Google Scholar
  48. 48.
    King C, Mueller Hoenger R, Malo Cleary M, Murali-Krishna K, Ahmed R, King E, Sarvetnick N: Interleukin-4 acts at the locus of the antigen-presenting dendritic cell to counter-regulate cytotoxic CD8+ T-cell responses. Nat Med 7:206–214, 2001Google Scholar
  49. 49.
    Sharif S, Arreaza GA, Zucker P, Delovitch TL: Regulatory natural killer cells protect against spontaneous and recurrent type I diabetes. Ann NY Acad Sci 958:77–88, 2002Google Scholar
  50. 50.
    Poulton LD, Baxter AG: Clinical application of NKTcell asays to the prediction of type I diabetes. Diabetes Metab Res Rev 17:429–435, 2002Google Scholar
  51. 51.
    Singh AK, Wilson MT, Hong S, Olivares-Villagomez D, Du C, Stanic AK, Joyce S, Sritam S, Koezuka Y, Van Kaer L: Natural killer T cell activation protects mice against experimental autoim-mune encephalomyelitis. J Exp Med 194:1801–1811, 2001Google Scholar

Copyright information

© Plenum Publishing Corporation 2003

Authors and Affiliations

  • Edda M. Roberts
    • 1
  • De Shon Hall
    • 1
  • Sharon Ferguson
    • 1
  • Susan Minson
    • 1
  • Joanna D. Davies
    • 1
  1. 1.Department of Immunology, IMM-23The Scripps Research InstituteLa Jolla

Personalised recommendations