Neurochemical Research

, Volume 24, Issue 4, pp 481–489 | Cite as

Lipid Changes in Niemann-Pick Disease Type C Brain: Personal Experience and Review of the Literature

  • Marie T. Vanier


Niemann-Pick disease type C (NPC) is a neurovisceral disorder characterized by lysosomal sequestration of endocytosed LDL-cholesterol, premature and abnormal enrichment of cholesterol in trans Golgi cisternae and accompanying anomalies in intracellular sterol trafficking. In addition to cholesterol, the NPC lesion has also been shown to impact the metabolism of sphingolipids. Lipids, more particularly glycolipids, were studied in brain tissue from eight cases with proven NPC, ranging from 21 fetal weeks to 19 years of age (one case with rapidly fatal neonatal cholestatic icterus, three cases with infantile neurological onset, one late infantile and two juvenile neurological cases). In gray matter, the concentrations of total cholesterol, sphingomyelin and total gangliosides were within the normal range in all cases. In white matter, a severe loss of galactosylceramide and other myelin lipids (including cholesterol) was prominent in patients with the neurological severe infantile form (levels similar to those in 6–8 month-old infants) or the late infantile form of the disease, but only a slight decrease was observed in patients with a juvenile neurological onset. Analysis of the ganglioside profiles and study of minor neutral glycolipids revealed striking abnormalities, although not present at the fetal stage. In cerebral cortex, gangliosides GM3 and GM2 showed a significant increase, 10–15 fold and 3–5-fold the normal level, respectively, with already some abnormalities in a 3-month-old patient. Except in the latter patient, a prominent storage of glucosylceramide, lactosylceramide and gangliotriaosylceramide (asialo-GM2) was observed, with 10–50-fold increases from the normal concentration. The fatty acid composition of these glycolipids suggests that they have a neuronal origin. A slight increase of globotriaosyl- and globotetraosyl-ceramide and of more complex neutral glycolipids also occurred. While ganglioside changes were essentially similar in gray and white matter, changes of the neutral glycolipids were only minimal in the latter. Our data are in good accordance with previous studies and provide additional information. They emphasize that, apart a varying demyelinating process (most pronounced in children with a severe infantile neurological form) brain lipids abnormalities are essentially located to the gray matter. They confirm and give more precise information on the glycolipid nature of the neuronal storage, and establish that a similar type of changes occurs in the different neurological forms of the disease. Yet, our study indicates that glycolipid changes in brain do not occur before a few months after birth, possibly at a period concomitant with the onset of neurological symptoms, in contrast to the very early glycolipid abnormalities observed in non-neural organs. Glycolipid changes rather similar to those seen in NPC brain, in particular for gangliosides, have been described for other lysosomal disorders such as Niemann-Pick type A and mucopolysaccharidoses. The glucosyl-and lactosylceramide accumulation, however, is more striking in NPC, especially taking into account that there is no other known storage in NPC brain. Some neuropathological changes, such as ectopic neurites, could be related to the glycolipid changes. Metabolic studies in cultured fibroblasts combined to the observation that no lipids other than glycolipids accumulate in brain suggest that the NPC gene products possibly participate in intracellular transport or regulate metabolism of glycolipids.

Niemann-Pick disease cholesterol ganglioside glucosylceramide lactosylceramide cerebroside sphingomyelin 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Pentchev, P.G., Vanier, M.T., Suzuki, K., and Patterson, M. 1995. Niemann-Pick disease type C: a cellular cholesterol lipidosis., pages 2625-2639, in C.R. Scriver, A.L. Beaudet, W.S. Sly, D. Valle, (ed.), The Metabolic and Molecular Bases of Inherited Disease, 7th Edition, New York: McGraw Hill.Google Scholar
  2. 2.
    Vanier, M.T., and Suzuki, K. 1996. Niemann-Pick diseases. Neurodystrophies and Neurolipidoses, Handbook of Clinical Neurology, vol. 66, ed. H.W. Moser pp. 133-162. Amsterdam: Elsevier Science.Google Scholar
  3. 3.
    Vanier, M.T., and Suzuki, K. 1998. Recent advances in elucidating Niemann-Pick C disease. Brain Path. 8:163-174.Google Scholar
  4. 4.
    Liscum, L., and Klansek, J.J. 1998. Niemann-Pick disease type C. Curr. Opin. Lipidol. 9:131-135.Google Scholar
  5. 5.
    Patterson, M., Vanier M.T., Suzuki, K., Morris, J.A., Carstea, E.D., Neufeld, E.B., Blanchette-Mackie, E.J., and Pentchev, P. 1999. Niemann-Pick disease type C: a lipid trafficking disorder, in C.R. Scriver, A.L. Beaudet, W.S. Sly, D. Valle, (ed.) The Metabolic and Molecular Bases of Inherited Disease, 8th Edition, New York: McGraw Hill. in press.Google Scholar
  6. 6.
    Steinberg, S.J., Ward, C.P., and Fensom, A.H. 1994. Complementation studies in Niemann-Pick disease type C indicate the existence of a second group. J. Med. Genet. 31:317-320.Google Scholar
  7. 7.
    Vanier, M.T., Duthel, S., Rodriguez, L.C., Pentchev, P., and Carstea, E.D. 1996. Genetic heterogeneity in Niemann-Pick C disease: a study using somatic cell hybridization and linkage analysis. Am. J. Hum. Genet. 58:118-125.Google Scholar
  8. 8.
    Carstea, E.D., Morris, J.A., Coleman, K.G., Loftus, S.K., Zhang, D., Cummings, C., Gu, J., Rosenfeld, M.A., Pavan, W.J., Krizman, D.B., Nagle, J., Polymeropoulos, M.H., Sturley, S.L., Ioannou, Y.A., Higgins, M.E., Comly, M., Cooney, A., Brown, A., Kaneski, C.R., Blanchette-Mackie, E.J., Dwyer, N.K., Neufeld, E.B., Chang, T.Y., Liscum, L., Strauss J.F., Ohno K., Zeigler M., Carmi R., Sokol J., Markie D., O'Neill R.R., van Diggelen O.P., Elleder M., Patterson M.C., Brady R.O., Vanier M.T., Pentchev P.G., and Tagle D.A. 1997. Niemann-Pick C1 disease gene: homology to mediators of cholesterol homeostasis. Science. 277:228-231.Google Scholar
  9. 9.
    Crocker, A.C. 1961. The cerebral defect in Tay-Sachs disease and Niemann-Pick disease. J. Neurochem. 7:68-80.Google Scholar
  10. 10.
    Greer, W.L., Riddell, D.C., Gillan, T.L., Girouard, G.S., Sparrow, S.M., Byers, D.M., Dobson, M.J., and Neumann, P.E. 1998. The Nova Scotia (Type D) form of Niemann-Pick disease is caused by a G3097→T transversion in NPC1. Am. J. Hum. Genet. 63:52-54.Google Scholar
  11. 11.
    Yano T., Taniguchi M., Akaboshi, S., Vanier M.T., Tai, T., Sakuraba, H., and Ohno, K. 1996. Accumulation of GM2 ganglioside in Niemann-Pick disease type C fibroblasts. Proc. Japan Acad. B 72:214-219.Google Scholar
  12. 12.
    Norman, R.M., Forrester, R.M., and Tingey, A.H. 1967. The juvenile form of Niemann-Pick disease. Arch. Dis. Child. 42:91-96.Google Scholar
  13. 13.
    Oppenheimer, D.R., Norman, R.M., Tingey, A.H., and Aherne, W.A. 1967. Histological and biochemical findings in juvenile Niemann-Pick disease. J. Neurol. Sci. 5:575-588.Google Scholar
  14. 14.
    Lowden, J.A., LaRamee, M.A., and Wentworth, P. 1967. The subacute form of Niemann-Pick disease. Arch. Neurol. 17:230-237.Google Scholar
  15. 15.
    Philippart, M., Martin, L., Martin, J.J., and Menkes, J.H. 1969. Niemann-Pick disease. Morphologic and biochemical studies in the visceral form with late central nervous system involvement (Crocker's group C). Arch. Neurol. 20:227-238.Google Scholar
  16. 16.
    Tjiong, H.B., Seng, P.N., Debuch, H., and Wiedemann, H.R. 1973. Brain lipids of a case of juvenile Niemann-Pick disease. J. Neurochem. 21:1475-1485.Google Scholar
  17. 17.
    Rao, B.G., and Spence, M.W. 1977. Niemann-Pick disease type D: lipid analyses and studies on sphingomyelinases. Ann. Neurol. 1:385-392.Google Scholar
  18. 18.
    Guibaud, P., Vanier, M.T., Malpuech, G., Gaulme, J., Houllemare, R., Goddon, R., and Rousson, R. 1979. Forme infantile précoce, cholestatique, rapidement mortelle de la sphingomyelinose de type C. A propos de deux observations. Pédiatrie. 43:103-114.Google Scholar
  19. 19.
    Elleder, M., Jirasek, A., Smid, F., Ledvinova, J., Besley, G.T., and Stopekova, M. 1984. Niemann-Pick disease type C with enhanced glycolipid storage. Report on further case of so-called lactosylceramidosis. Virchows Archiv A Pathol. Anat. 402:307-317.Google Scholar
  20. 20.
    Elleder, M., Jirasek, A., Smid, F., Ledvinova, J., and Besley, G.T. 1985. Niemann-Pick disease type C. Study on the nature of the cerebral storage process. Acta Neuropathol. 66:325-336.Google Scholar
  21. 21.
    Besley, G.T., and Elleder, M. 1986. Enzyme activities and phospholipid storage patterns in brain and spleen samples from Niemann-Pick disease variants: a comparison of neuropathic and non-neuropathic forms. J. Inherit. Metab. Dis. 9:59-71.Google Scholar
  22. 22.
    Vanier, M.T., Pentchev, P.G., and Rousson, R. 1988. Pathophysiological approach of Niemann-Pick disease type C; definition of a biochemical heterogeneity and reevaluation of the lipid storage process, pages 175-185, in R. Salvayre, L. Douste-Blazy, S. Gatt, (ed.) Lipid Storage Disorders: Biological and Medical Aspects, New York: Plenum Press.Google Scholar
  23. 23.
    Elleder, M. 1989. Niemann-Pick disease. Path Res Pract. 185:293-328.Google Scholar
  24. 24.
    Ivemark, B., Svennerholm, L., Thoren, C., and Tunell, R. 1963. Niemann-Pick disease in infancy. Report of two siblings with clinical, histologic and chemical studies. Acta Paediatrica. 52:391-404.Google Scholar
  25. 25.
    Pilz, H., Sandhoff, K., and Jatzkewitz, H. 1966. Eine Gangliosidstoffwechselstörung mit Anhäufung von Ceramid-lactosid, Monosialo-Ceramid-Lactosid und Tay-Sachs-Gangliosid im Gehirn. J. Neurochem. 13:1273-1282.Google Scholar
  26. 26.
    Dawson, G. 1972. Glycosphingolipid levels in an unusual neurovisceral storage disease characterized by lactosylceramide galactosylhydrolase deficiency: lactosylceramidosis. J. Lipid Res. 13:207-219.Google Scholar
  27. 27.
    Hagberg, B., Haltia, M., Sourander, P., Svennerholm, L., Vanier, M.T., and Ljunggren, C.G. 1978. Neurovisceral storage disorder simulating Niemann-Pick disease. A new form of oligosaccharidosis? Neuropädiatrie. 9:59-73.Google Scholar
  28. 28.
    Svennerholm, L., and Vanier, M.T. 1972. The distribution of lipids in the human nervous system. II-Lipid composition of human foetal and infant brain. Brain Res. 47:457-468.Google Scholar
  29. 29.
    Vanier, M.T., Holm, M., Månsson, J.E., and Svennerholm, L. 1973. The distribution of lipids in the human nervous system. V-Gangliosides and allied neutral glycolipids in infant brain. J. Neurochem. 21:1375-1384.Google Scholar
  30. 30.
    Svennerholm, L., Vanier, M.T., and Månsson, J.E. 1980. Krabbe disease: a galactosylsphingosine (psychosine) lipidosis. J. Lipid Res. 21:53-64.Google Scholar
  31. 31.
    Vanier, M.T., Rodriguez-Lafrasse, C., Rousson, R., Mandon, G., Boué, J., Choiset, A., Peyrat, M.F., Dumontel, C., Juge, M.C., Pentchev, P., Revol, A., and Louisot, P. 1992. Prenatal diagnosis of Niemann-Pick type C disease: current strategy from an experience of 37 pregnancies at risk. Am. J. Hum. Genet. 51:111-122.Google Scholar
  32. 32.
    Martin, J.J., Lowenthal, A., Ceuterick, C., and Vanier, M.T. 1984. Juvenile dystonic lipidosis (variant of Niemann-Pick disease type C). J. Neurol. Sci. 66:33-45.Google Scholar
  33. 33.
    Wells, M.A., and Dittmer, J.C. 1963. The use of Sephadex for the removal of nonlipid contaminants from lipid extracts. Biochemistry. 6:3169-3175.Google Scholar
  34. 34.
    Yu, R.K., and Ledeen, R.W. 1972. Gangliosides of human, bovine and rabbit plasma. J. Lipid Res. 13:680-686.Google Scholar
  35. 35.
    Kean, E.L. 1966. Separation of gluco and galactocerebrosides by means of borate thin-layer chromatography. J. Lipid Res. 7:449-452.Google Scholar
  36. 36.
    Saito, T., and Hakomori, S.I. 1971. Quantitative isolation of total glycosphingolipids from animal cells. J. Lipid Res. 12:257-259.Google Scholar
  37. 37.
    Holm, M., Månsson, J.E., Vanier, M.T., and Svennerholm, L. 1972. Gangliosides of human, bovine and rabbit retina. Biochim. Biophys. Acta. 280:356-364.Google Scholar
  38. 38.
    Svennerholm, L. 1956. The quantitative estimation of neutral blood serum glycolipids by thin-layer chromatography. J. Neurochem. 1:42-53.Google Scholar
  39. 39.
    Rodriguez-Lafrasse, C., and Vanier, M.T. 1999. Sphingosylphosphorylcholine in Niemann-Pick disease brain: accumulation in type A but not in type B. Neurochem. Res. 24:199-205.Google Scholar
  40. 40.
    Elleder, M. 1988. Heterogeneity and special features of the storage process in Niemann-Pick disease, pages 141-161, in R. Salavayre, L. Douste-Blazy, S. Gatt, (ed.) Lipid Storage Disorders. Biological and Medical Aspects, New York: Plenum Press.Google Scholar
  41. 41.
    Liscum, L., Ruggiero, R.M., and Faust, J.R. 1989. The intracellular transport of low density lipoprotein-derived cholesterol is defective in Niemann-Pick type C fibroblasts. J. Cell Biol. 108:1625-1636.Google Scholar
  42. 42.
    Snipes, G.J., and Suter, U. 1997. Cholesterol and Myelin, pages 173-204, in R. Bittman, (ed.) Cholesterol: Its Functions and Metabolism in Biology and Medicine. New York: Plenum Press.Google Scholar
  43. 43.
    Jurevics, H., and Morell, P. 1995. Cholesterol for synthesis of myelin is made locally, not imported into brain. J. Neurochem. 64:895-901.Google Scholar
  44. 44.
    Thomas, G.H., Tuck Muller, C.M., Miller, C.S., and Reynolds, L.W. 1989. Correction of sphingomyelinase deficiency in Niemann-Pick type C fibroblasts by removal of lipoprotein fraction from culture media. J. Inherit. Metab. Dis. 12:139-151.Google Scholar
  45. 45.
    Vanier, M.T., Rodriguez Lafrasse, C., Rousson, R., Gazzah, N., Juge, M.C., Pentchev, P.G., Revol, A., and Louisot, P. 1991. Type C Niemann-Pick disease: spectrum of phenotypic variation in disruption of intracellular LDL-derived cholesterol processing. Biochim. Biophys. Acta. 1096:328-337.Google Scholar
  46. 46.
    Harzer, K., Scholte, W., Peiffer, J., Benz, H.U., and Anzil, A.P. 1978. Neurovisceral lipidosis compatible with Niemann-Pick disease type C: morphological and biochemical studies of a late infantile case and enzyme and lipid assays in a prenatal case of the same family. Acta Neuropathol. 43:97-104.Google Scholar
  47. 47.
    Vanier, M.T., Wenger, D.A., Comly, M.E., Rousson, R., Brady, R.O., and Pentchev, P.G. 1988. Niemann-Pick disease group C: clinical variability and diagnosis based on defective cholesterol esterification. A collaborative study on 70 patients. Clin. Genet. 33:331-348.Google Scholar
  48. 48.
    Wiedemann, H.R., Debuch, H., Lennert, K., Caesar, R., Blumcke, S., Harms, D., Tolksdorf, M., Seng, P.N., Korenke, H.D., Gerken, H., Freitag, F., and Dorner, K. 1972. Über eine infantil-juvenile, Subchronisch verlaufende, den sphingomyelinosen (Niemann-Pick) anzureihende Form der Lipidosen—ein neuer Typ? Klinische, pathohistologische, elektronenmikroskopische und biochemische Untersuchungen. Z. Kinderheilkd. 112:187-225.Google Scholar
  49. 49.
    Kannan, R., Tjiong, H.B., Debuch, H., and Wiedemann, H.R. 1974. Unusual glycolipids in brain cortex of a visceral lipidosis (Niemann-Pick disease?). Hoppe Seylers Z. Physiol. Chem. 355:551-556.Google Scholar
  50. 50.
    Vanier, M.T., Holm, M., Öhman, R., and Svennerholm, L. 1971. Developmental profiles of gangliosides in human and rat brain. J. Neurochem. 18:581-592.Google Scholar
  51. 51.
    Dumontel, C., Girod, C., Dijoud, F., Dumez, Y., and Vanier, M.T. 1993. Fetal Niemann-Pick disease type C: ultrastructural and lipid findings in liver and spleen. Virchows Archiv A Pathol Anat. 422:253-259.Google Scholar
  52. 52.
    Costantopoulos, G., and Dekaban, A.S. 1978. Neurochemistry of the mucopolysaccharidoses: brain lipids and lysosomal enzymes in patients with four types of mucopolysaccharidosis and normal controls. J. Neurochem. 30:965-973.Google Scholar
  53. 53.
    Hara, A., Kitazawa, N., and Taketomi, T. 1984. Abnormalities of glycosphingolipids in mucopolysaccharidosis type IIIB. J. Lipid Res. 25:175-184.Google Scholar
  54. 54.
    Kamoshita, S., Aron, A.M., and Suzuki, K. 1969. Infantile Niemann-Pick disease. A chemical study with isolation and characterization of membranous cytoplasmic bodies and myelin. Am. J. Dis. Child. 117:379-394.Google Scholar
  55. 55.
    Brunngraber, E.G., Berra, B., and Zambotti, V. 1973. Altered levels of tissue glycoproteins, gangliosides, glycosaminoglycans and lipids in Niemann-Pick's disease. Clin. Chim. Acta. 48:173-181.Google Scholar
  56. 56.
    Nilsson, O., and Svennerholm, L. 1982. Accumulation of glucosylceramide and glucosylsphingosine (psychosine) in cerebrum and cerebellum in infantile and juvenile Gaucher disease. J. Neurochem. 39:709-718.Google Scholar
  57. 57.
    Walkley, S.U. 1998. Cellular pathology of lysosomal storage disorders. Brain Path. 8:175-193.Google Scholar
  58. 58.
    Vanier, M.T. 1983. Biochemical studies in Niemann-Pick disease. I-Major sphingolipids of liver and spleen. Biochim. Biophys. Acta. 750:178-184.Google Scholar
  59. 59.
    Chen, C.-S., Bach, G., and Pagano, R.E. 1998. Abnormal transport along the lysosomal pathway in mucolipidosis type IV disease. Proc. Natl. Acad. Sci. 95:6373-6378.Google Scholar

Copyright information

© Plenum Publishing Corporation 1999

Authors and Affiliations

  • Marie T. Vanier
    • 1
    • 2
  1. 1.INSERM Unit 189, Department of BiochemistryLyon-Sud School of MedicineOullinsFrance and
  2. 2.Laboratoire de Neurochimie Fondation Gillet-MerieuxCentre Hospitalier Lyon-SudPierre BeniteFrance

Personalised recommendations