, Volume 12, Issue 1–4, pp 317–330 | Cite as

Behavioural Effects of Pesticides in Bees–Their Potential for Use in Risk Assessment

  • Helen M. Thompson


This paper reviews a wide variety of behavioural effects that have been reported in bees following exposure to pesticides, primarily insecticides. These range from effects on odour discrimination in the individual to the loss of foraging bees due to disruption of their homing behaviour. Some of these effects have the potential to have a significant impact on the development and survival of colonies. However, there is currently little guidance available on the types of behavioural data which should be collected during laboratory, semi-field or field regulatory studies or how they should be included and interpreted in risk assessment. Further work is required to allow risk assessment to include significant behavioural effects and their longer term consequences on colony survival and development. Such an approach will require a larger base set of data to predict the longer-term consequences on colonies of short-term effects on individuals, e.g. through population modelling.

pesticides sublethal honey bees risk assessment 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Atkins, E.L. and Kellum, D. (1986). Comparative morphogenic and toxicity studies on the effect of pesticides on honeybee brood. J. Apicult. Res. 25, 242-55.Google Scholar
  2. Atkins, E.L., Macdonald, R.L. and Greywood-Hale, E.A. (1975a). Repellent additives to reduce pesticide hazards to honey bees: field tests. Environ. Entomol. 4, 207-10.Google Scholar
  3. Atkins, E.L., Macdonald, R.L., McGovern, T.P., Beroza, M. and Greywood-Hale, E.A. (1975b). Repellent additives to reduce pesticide hazards to honey bees: laboratory testing. J. Apicult. Res. 14, 85-97.Google Scholar
  4. Barker, R.J. and Taber, S. (1977). Effects of diflubenzuron fed to caged honey bees. Environ. Entomol. 6, 167-8.Google Scholar
  5. Belzunces, L.P., Vandame, R. and Xingfa Gu. (2001). Joint effects of pyrethrinoid insecticides and azole fungicides on honey-bee thermoregulation. In L.P. Belzunces, C. Pelissier and G.B. Lewis (eds) Hazards of Pesticides to Bees, pp. 297-8. France: INRA.Google Scholar
  6. Bendahou, N., Fleche, C. and Bounias, M. (1999). Biological and biochemical effects of chronic exposure to very low levels of dietary cypermethrin (Cymbush) on honeybee colonies (Hymenoptera: Apidae). Ecotoxicol. Environ. Saf. 44, 147-53.Google Scholar
  7. Breed, M.D., Stiller, T.M., Blum, M.S. and Page, E.R. Jr (1992). Honeybee nestmate recognition: effects of queen fecal pheromones. J. Chem. Ecol. 18, 1633-40.Google Scholar
  8. Bromenshenk, J.J., Cronn, R.C. and Nugent, J.J. (1996). Monitoring fluoride with honey bees in the upper Snake River Plain of Idaho. J. Environ. Qual. 25, 868-77.Google Scholar
  9. Bromenshenk, J.J., Doskocil, J., Olbu, G.J., DeGrandi-Hoffman, G. and Roth, S.A. (1991a). PC BEEPOP, an ecotoxicological simulation-model for honey-bee populations. Environ. Toxicol. Chem. 10, 547-58.Google Scholar
  10. Bromenshenk, J.J., Gudatis, J.L., Carlson, S.R., Thomas, J.M. and Simmons, M.A. (1991b). Population-dynamics of honey-bee nucleus colonies exposed to industrial pollutants. Apidologie 22, 359-69.Google Scholar
  11. Chandel, R.S. and Gupta, P.R. (1992). Toxicity of diflubenzuron and penfluron to immature stages of Apis cerana indica and Apis mellifera L. Apidologie 23, 465-73.Google Scholar
  12. Cox, R.L. and Wilson, W.T. (1984). Effects of permethrin on the behavior of individually tagged honey bees, Apis mellifera L. (Hymenoptera: Apidae). Environ. Entomol. 13, 375-8.Google Scholar
  13. Davis, A.R., Solomon, K.R. and Shuel, R.W. (1988). Laboratory studies of honeybee larval growth and development as affected by systemic insecticides at adult sub-lethal levels. J. Apicult. Res. 27, 146-61.Google Scholar
  14. De Wael, L., De Greef, M. and Van Laere, O. (1995). Toxicity of pyriproxifen and fenoxycarb to bumble bee brood using a new method for testing insect growth regulators. J. Apicult. Res. 34, 3-8.Google Scholar
  15. Decourtye, A., Le Metayer, M., Pottiau, H., Tissuer, M., Odoux, J.F. and Pham-Delegue, M.H. (1999). Impairment of olfactory learning performances in the honeybee after long term ingestion of imidacloprid. In L.P. Belzunces, C. Pelissier and G.B. Lewis, (eds) Hazards of Pesticides to Bees, pp. 113-17. France: INRA.Google Scholar
  16. Delabie, J., Bos, C., Fonta, C. and Masson, C. (1985). Toxic and repellent effects of cypermethrin on the honeybee: laboratory, glasshouse and field experiments. Pesti. Sci. 16, 409-15.Google Scholar
  17. Deng, G. and Waddington, K.D. (1997). Methoprene does not affect food preferences and foraging performance in honey bee workers. J. Insect. Behav. 10, 229-35.Google Scholar
  18. Downs, S.G., Ratnieks, F.L.W., Jefferies, S.L. and Rigby, H.E. (2000). The role of floral oils in the nestmate recognition system of honey bees (Apis mellifera L.). Apidologie 31, 357-65.Google Scholar
  19. Ebadi, R., Gary, N.E. and Lorenzen, K. (1980). Effects of carbon dioxide and low temperature narcosis on honey bees, Apis mellifera. Environ. Entomol. 9, 144-7.Google Scholar
  20. EPA (Draft 1996). Honey bee acute contact toxicity. Ecological Effects Test Guidelines OPPTS 850.3020, USEPA.Google Scholar
  21. EPPO (1992). Guideline on test methods for evaluating the side-effects of plant protection products on honeybees. Bull. OEPP/EPPO Bull. 22, 203-16.Google Scholar
  22. EPPO (1993). Decision making scheme for the environmental risk assessment of plant protection products. Chapter 10 Honeybees. Bull. OEPP/EPPO Bull. 23, 151-65.Google Scholar
  23. Goulson, D. and Stout, J.C. (2001). Homing ability of the bumble bee Bombus terrestris (Hymenoptera: Apidae). Apidologie 32, 105-11.Google Scholar
  24. Guez, D., Suchail, S., Gauthier, M., Maleszka, R. and Belzunces, L.P. (2001). Contrasting effects of imidacloprid on habituation in 7-and 8-day-old honeybees (Apis mellifera). Neurobiol. Learn. Mem. 76, 183-91.Google Scholar
  25. Gupta, P.R. and Chandel, R.S. (1995). Effects of diflubenzuron and penfluron on workers of Apis cerana indica F and Apis mellifera L. Apidologie 26, 3-10.Google Scholar
  26. Haynes, K.F. (1988). Sublethal effects of neurotoxic insecticides on insect behavior. Annual Rev. Entomol. 33, 149-68.Google Scholar
  27. Jay, S.C. (1964). Starvation studies of larval honey bees. Can. J. Zool. 42, 455-62.Google Scholar
  28. Jaycox, E.R., Skowronek, W. and Guynn, G. (1974). Behavioral changes in worker honey bees (Apis mellifera) induced by injections of juvenile hormone mimic. Ann. Entomolog. Soc. America 67, 529-34.Google Scholar
  29. Kevan, P.G. (1999). Pollinators as bioindicators of the state of the environment: species activity and diversity. Agricult. Ecosyst. Environ. 74, 373-93.Google Scholar
  30. Koch, W. and Weiber, P. (1997). Exposure of honey bees during pesticide application under field conditions. Apidologie 28, 439-47.Google Scholar
  31. Kirchner, W.H. (1998). The effect of sublethal doses of imidachloprid on the foraging behaviour and orientation ability of honey-bees. Unpublished Stdy Report, Konstanz, 13pp.Google Scholar
  32. Le Blanc, J. (1985). Field experiments and the effects of a new pyrethroid insecticide WL-85871 on bees foraging artificial aphid honeydew on winter wheat. Pestic. Sci. 16, 206.Google Scholar
  33. MacKenzie, K.E. and Winston, M.L. (1989). Effects of sublethal exposure to diazinon on longevity and temporal division of labor in the honey bee (Hymenoptera: Apidae). J. Econom. Entomol. 82, 75-82.Google Scholar
  34. Mamood, A.N. and Waller, G.D. (1990). Recovery of learning responses by honeybees following sublethal exposure to permethrin. Physiol. Entomol. 15, 55-60.Google Scholar
  35. Mayer, D.F., Kovacs, G. and Lunden, J.D. (1998). Field and laboratory tests on the effects of cyhalothrin on adults of Apis mellifera, Megachile rotundata and Nomia melanderi. J. Apicult. Res. 37, 33-7.Google Scholar
  36. Mayer, D.F. and Lunden, J.D. (1999). Field and laboratory tests of the effects of fipronil on adult female bees of Apis mellifera, Megachile rotundata and Nomia melanderi. J. Apicult. Res. 38, 191-7.Google Scholar
  37. Menzel, R. (1993). Associative learning in honey bees. Apidologie 24, 157-68.Google Scholar
  38. Menzel, R., Geiger, K., Joerges, J., Muller, U. and Chittka, L. (1998). Bees travel homeward routes by integrating separately acquired vector memories. Anim. Behav. 55, 139-52.Google Scholar
  39. Moriarty, F. (1969). The sublethal effects of synthetic insecticides on insects. Biologic. Rev. 44, 321-57.Google Scholar
  40. Nation, J.L., Robinson, F.A., Yu, S.J. and Bolten, A.B. (1986). Influence upon honeybees of chronic exposure to very low levels of selected insecticides in their diet. J. Apicult. Res. 25, 170-7.Google Scholar
  41. Naumann, K., Currie, R.W. and Isman, M.B. (1994). Evaluation of the repellent effects of a neem insecticide on foraging honey bees and other pollinators. Can. Entomolog. 126, 225-30.Google Scholar
  42. Nigg, H.N., Russ, R.V., Mahon, W.D., Stamper, J.H. and Knapp, J.L. (1991). Contamination of sucrose solution with aldicarb sulfoxide inhibits foraging by honeybees (Hymenoptera: Apidae). J. Econom. Entomol. 84, 810-3.Google Scholar
  43. NRCC. (1981). Pseticide-Pollinator Interactions, NRCC/CNRC Ottawa, Publication No. 18471, 190pp.Google Scholar
  44. OECD (1998a). Guidelines for the testing of chemicals Number 213 Honeybees, Acute Oral Toxicity Test, OECD. Environmental Health and Safety Division, Paris.Google Scholar
  45. OECD (1998b). Guidelines for the testing of chemicals Number 214 Honeybees, Acute Contact Toxicity Test, OECD. Environmental Health and Safety Division, Paris.Google Scholar
  46. Oomen, P.A., De Ruijter, A. and van der Steen, J. (1992). Method for honeybee brood feeding tests with insect growth-regulating insecticides. Bull. OEPP/EPPO Bull. 22, 613-16.Google Scholar
  47. Pajot, S. (2001). Dossier Gaucho. Abielles et Fleurs 616, 160-5.Google Scholar
  48. Pham-Delegue, M.H., Girard, C., Le Metayer, M., Picard-Nizou, A.-L., Hennequet, C., Pons, O. and Jouanin, L. (2000). Long-term effects of soybean protease inhibitors on digestive enzymes, survival and learning abilities of honeybees. Entomolog. Experiment. Appli. 95, 21-9.Google Scholar
  49. Rieth, J.P. and Levin, M.D. (1988). The repellent effect of two pyrethroid insecticides on the honey bee. Physiol. Entomol. 13, 213-18.Google Scholar
  50. Rieth, J.P. and Levin, M.D. (1989). Repellency of two phenyl-acetate-ester pyrethroids to the honeybee. J. Apicult. Res. 28, 175-9.Google Scholar
  51. Robinson, G.E. (1985). Effects of a juvenile hormone analogue on honey bee foraging behaviour and alarm pheromone production. J. Insect Physiol. 31, 277-82.Google Scholar
  52. Schmuck, R. (1999). No causal relationship between Gaucho seed dressing in sunflowers and the French bee syndrome. Pflanzenschutz-Nachrichten Bayer 52(99), 257-99.Google Scholar
  53. Schmuck, R., Schoning, R., Stork, A. and Schramel, O. (2001). Risk posed to honeybees (Apis mellifera L., Hymenoptera) by an imidacloprid seed dressing of sunflowers. Pest Manag. Sci. 57, 225-38.Google Scholar
  54. Schricker, B. and Stephen, W.P. (1970). The effect of sublethal doses of parathion on honeybee behaviour. I. Oral adminstration and the communication dance. J. Apicult. Res. 9, 141-53.Google Scholar
  55. Shires, S.W., Le Blanc, J., Murray, A., Forbes, S. and Debray, P. (1984). A field trial to assess the effects of a new pyrethroid insecticide, WL85871, on foraging honeybees in oilseed rape. J. Apicult. Res. 23, 217-26.Google Scholar
  56. Smirle, M.J. (1993). The influence of colony population and brood rearing intensity on the activity of detoxifying enzymes in worker honey bees. Physiol. Entomol. 18, 420-4.Google Scholar
  57. Solomon, M.G. and Hooker, K.J.M. (1989). Chemical repellents for reducing pesticide hazard to honeybees in apple orchards. J. Apicult. Res. 28, 223-7.Google Scholar
  58. Stephen, W.P. and Schricker, B. (1970). The effect of sublethal doses of parathion II Site of parathion activity, and signal integration. J. Apicult. Res. 9, 155-64.Google Scholar
  59. Stone, J.C., Abramson, C.I. and Price, J.M. (1997). Task dependent effects of Dicofol (Kelthane) on learning in the honey bee (Apis mellifera). Bull. Environ. Contam. Toxicol. 58, 177-83.Google Scholar
  60. Stoner, A. and Wilson, W.T. (1982). Diflubenzuron (Dimilin): effect of long-term feeding of low doses in sugar cake or sucrose syrup on honey bees in standard-size field colonies. Amer. Bee J. 122, 579-82.Google Scholar
  61. Stoner, A., Wilson, W.T. and Harvey, J. (1983). Dimethoate (Cygon): effect of long-term feeding of low doses on honey bees in standard size field colonies. The Southwestern Entomolog. 8, 174-7.Google Scholar
  62. Stoner, A., Wilson, W.T. and Harvey, J. (1985). Acephate (Orthene): effects on honey bee queen, brood and worker survival. Amer. Bee J. 125, 448-50.Google Scholar
  63. Stoner, A., Wilson, W.T. and Rhodes, H.A. (1982). Carbofuran: effect of long-term feeding of low doses in sucrose syrup on honey bees in standard-size field colonies. Environ. Entomol. 11, 53-9.Google Scholar
  64. Suchail, S., Guez, D. and Belzunces, L.P. (2000). Characteristics of Imidacloprid toxicity in two Apis mellifera subspecies. Environ. Toxicol. Chem. 19, 1901-5.Google Scholar
  65. Tasei, J.N. (2001). Effects of insect growth regulators on honey bees and non-apis bees. A review. Apidologie 32, 527-45.Google Scholar
  66. Tasei, J.N., Carre, S., Moscatelli, B. and Grondeau, C. (1988). Recherche de la D L 50 de la deltamethrine (Decis) chez Megachile Rotundata F. abeille pollinisatrice de la luzerne (Medicago sativa L.) et des effets de doses infralethales sur les adultes et les larves. Apidologie 19, 291-306.Google Scholar
  67. Tasei, J.N., Lerin, J. and Ripault, G. (2000). Sub-lethal effects of imidacloprid on bumblebees, Bombus terrestris (Hymenoptera: Apidae) during a laboratory feeding test. Pest Manag. Sci. 56, 784-8.Google Scholar
  68. Tasei, J.N., Ripault, G. and Rivault, E. (2001). Effects of Gaucho seed coating on bumblebees visiting sunflower. In L.P. Belzunces, C. Pelissier and G.B. Lewis (eds) Hazards of Pesticides to Bees, pp. 207-12. France: INRA.Google Scholar
  69. Taylor, K.S., Waller, G.D. and Crowder, L.A. (1987). Impairment of a classical conditioned response of the honey bee (Apis mellifera L.) by sublethal doses of synthetic pyrethroid insecticides. Apidologie 18, 243-52.Google Scholar
  70. Vandame, R., Meled, M., Colin, M.E. and Belzunces, L.P. (1995). Alteration of the homing-flight in the honey bee Apis mellifera L. exposed to sublethal dose of deltamethrin. Environ. Toxicol. Chem. 14, 855-60.Google Scholar
  71. Waller, G.D., Barker, R.J. and Martin, J.H. (1979). Effects of dimethoate on honeybee foraging. Chemosphere 7, 461-3.Google Scholar
  72. Winston, M.L. and Punnett, E.N. (1982). Factors affecting temporal division of labour in honeybees. Can. J. Zool. 60, 2947-52.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • Helen M. Thompson
    • 1
  1. 1.National Bee UnitCentral Science LaboratorySand Hutton, YorkUK

Personalised recommendations