Advertisement

Annals of Global Analysis and Geometry

, Volume 23, Issue 2, pp 189–204 | Cite as

Compact Kähler Surfaces with Trivial Canonical Bundle

  • Nicholas Buchdahl
Article

Abstract

The classical conjectures of Weil on K3 surfaces – that the set of suchsurfaces is connected; that a version of the Torelli theorem holds; thateach such surface is Kähler; and that the period map issurjective – are reconsidered in the light of a generalisation of theNakai–Moishezon criterion, and short proofs of all the conjectures aregiven. Most of the proofs apply equally or with minor variation tocomplex 2-tori, the only other compact Kähler surfaces with trivialcanonical bundle.

Kähler surface K3 surface complex 2-torus period map Torelli theorem 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Barth, W., Peters, C. and Van de Ven, A.: Compact Complex Surfaces, Springer-Verlag, Berlin, 1984.Google Scholar
  2. 2.
    Beauville, A.: Le theéorème de Torelli pour les surfaces de Kummer, Astérisque 26 (1985), 9–110.Google Scholar
  3. 3.
    Beauville, A.: Le theéorème de Torelli pour les surfaces K3: fin de la démonstration, Astérisque 26 (1985), 11–121.Google Scholar
  4. 4.
    Beauville, A.: Surjectivité de l'application des périodes, Astérisque 126 (1985), 12–128.Google Scholar
  5. 5.
    Borcea, C.: Diffeomorphisms of a K3 surface, Math. Ann. 275 (1986), –4.Google Scholar
  6. 6.
    Buchdahl, N.: On compact Kähler surfaces, Ann. Inst. Fourier 49 (1999), 28–302.Google Scholar
  7. 7.
    Burns, D. and Rapoport, M.: On the Torelli problem for Kählerian K3 surfaces, Ann. Sci. Ecole Norm. Sup. 8 (1975), 23–274.Google Scholar
  8. 8.
    Demailly, J. P.: Regularization of closed positive currents and intersection theory, J. Alg. Geom. 1 (1992), 36–409.Google Scholar
  9. 9.
    Donaldson, S. K.: Polynomial invariants for smooth 4-manifolds, Topology 29 (1990), 25–315.Google Scholar
  10. 10.
    Friedman, R.: A new proof of the global Torelli theorem for K3 surfaces, Ann. of Math. 20 (1984), 23–269.Google Scholar
  11. 11.
    Griffiths, P. and Harris, J.: Principles of Algebraic Geometry, Wiley, New York, 1978.Google Scholar
  12. 12.
    Kodaira, K.: On the structure of compact complex analytic surfaces I, Amer. J. Math. 86 (1964), 75–798.Google Scholar
  13. 13.
    Kulikov, V.: Degenerations of K3 surfaces and Enriques surfaces, Math. USSR-Izv. 11 (1977), 11–136.Google Scholar
  14. 14.
    Lamari, A.: Courants kähleriens et surfaces compactes, Ann. Inst. Fourier 49 (1999), 26–285.Google Scholar
  15. 15.
    Lamari, A.: Le cône kählerian d'une surface, J. Math. Pures Appl. 78 (1999), 24–263.Google Scholar
  16. 16.
    Le Potier, J.: Simple connexité des surfaces K3, in: Géométrie des surfaces de K3: modules et périodes, Astérisque126 (1985), 7–89.Google Scholar
  17. 17.
    Looijenga, E.: A Torelli theorem for Kähler-Einstein K3 surfaces, in: E. Looijenga, D. Siersma and F. Takens (eds), Geometry Symposium Utrecht 1980 Lecture Notes in Math. 894, Springer-Verlag, Berlin, 1981, pp. 10–112.Google Scholar
  18. 18.
    Looijenga, E. and Peters, C.: A Torelli theorem for K3 surfaces, Compositio Math. 42 (1981), 14–186.Google Scholar
  19. 19.
    Matumoto, T.: On diffeomorphisms of a K3 surface, in: M. Nagata, S. Araki, A. Hattori and N. Iwahori (eds), Algebraic and Topological Theories, Kinokuniya, Tokyo, 1986, pp. 61–621.Google Scholar
  20. 20.
    Namikawa, Y.: Review of [23] in Math. Rev. (1983), MR#83g:14015.Google Scholar
  21. 21.
    Piatetskii-Shapiro, I. and Shafarevic, I.: A Torelli theorem for algebraic surfaces of type K3, Math. USSR-Izv. 5 (1971), 54–588.Google Scholar
  22. 22.
    Shioda, T.: The period map of Abelian surfaces, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 25 (1978), 4–59.Google Scholar
  23. 23.
    Siu, Y.-T.: A simple proof of the surjectivity of the period map for K3 surfaces, Manuscripta Math. 35 (1981), 31–321.Google Scholar
  24. 24.
    Siu, Y.-T.: Every K3 surface is Kähler, Invent. Math. 73 (1983), 13–150.Google Scholar
  25. 25.
    Todorov, A. N.: Applications of the Kähler-Einstein-Calabi-Yau metric to moduli of K3 surfaces, Invent. Math. 61 (1980), 25–265.Google Scholar
  26. 26.
    Wall, C. T. C.: On the orthogonal groups of unimodular quadratic forms II, J. reine angew. Math. 213 (1964), 12–136.Google Scholar
  27. 27.
    Weil, A.: Final report on contract AF 18(603)-57, (1958). Oeuvres Scientifiques, Vol. II, Springer, New York, 1980.Google Scholar
  28. 28.
    Yau, S.-T.: On the Ricci curvature of a complex Kähler manifold and the complex Monge-Ampère equation, Comm. Pure Appl. Math. 31 (1978), 33–411.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • Nicholas Buchdahl
    • 1
  1. 1.Department of Pure MathematicsUniversity of AdelaideAdelaideAustralia

Personalised recommendations