Behavior Genetics

, Volume 33, Issue 2, pp 137–159 | Cite as

Structural Equation Models for Evaluating Dynamic Concepts Within Longitudinal Twin Analyses

  • John J. McArdle
  • Fumiaki Hamagami


A great deal of prior research using structural equation models has focused on longitudinal analyses and biometric analyses. Some of this research has even considered the simultaneous analysis of both kinds of analytic problems. The key benefits of these kinds of analyses come from the estimation of novel parameters, such as the heritability of changes. This paper discusses some recent extensions of longitudinal multivariate models that can be informative within biometric designs. In the methods section we review a previous latent growth structural equation analysis of the New York Twin (NYT) longitudinal data (from McArdle et al., 1998). In the models section we recast this growth model in terms of latent difference scores, add several new dynamic components, including coupling parameters, and consider biometric components and examine model stability. In the results section we present new univariate and bivariate dynamic estimates and tests of various dynamic hypotheses for the NYT data, and we consider a few ways to interpret the age-related biometric components of these models. In the discussion we consider our limitations and present suggestions for future dynamic-genetic research.

Longitudinal twin analyses dynamic structural equation modeling fluid and crystallized intelligence Wechsler Adult Intelligence Tests New York Twin Study 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arminger, G. (1987). Structural equation modeling in research on human development and aging. In K. W. Shaie, R. T. Camp-bell, W. Meredith, and S. C. Rawlings (eds.), Methodological issues in aging research (pp. 71-170). New York: Springer.Google Scholar
  2. Baker, L. A., DeFries, J. C., and Fulker, D. W. (1983). Longitudinal stability of cognitive ability in the Colorado Adoption Project. Child Dev. 54:290-297.PubMedGoogle Scholar
  3. Bank, L., and Jarvik, L. F. (1978). A longitudinal study of aging human twins. In E. L. Schneider (ed.), The genetics of aging (pp. 303-333). New York: Plenum.Google Scholar
  4. Block, J. B. (1968). Hereditary components in the performance of twins on the WAIS. In S. G. Vandenberg (ed.), Progress in human behavior genetics (pp. 221-228). Baltimore: Johns Hopkins University Press.Google Scholar
  5. Blum, J. E., Clark, E. T., and Jarvik, L. F. (1973). The New York State Psychiatric Institute Study of Aging Twins. In L. F. Jarvik, C. Eisdorfer, and J. Blum (eds.), Intellectual functioning in adults (pp. 13-19). New York: Springer.Google Scholar
  6. Blum, J. E., Fosshage, J. L., and Jarvik, L. F. (1972). Intellectual changes and sex differences in octogenarians: A twenty year longitudinal study of aging. Dev. Psychol. 7:178-187.Google Scholar
  7. Boker, S. M. (2001). Differential models and “differential structural equation modeling of intraindividual variability.” In L. M. Collins and A. G. Sayer (eds.), New methods for the analysis of change. Decade of behavior (pp. 5-27). Washington, DC: American Psychological Association.Google Scholar
  8. Boker, S. M., and McArdle, J. J. (1995). Statistical vector field analysis applied to mixed cross-sectional and longitudinal data. Exp. Aging Res. 21:77-93.PubMedGoogle Scholar
  9. Boomsma, D. I., Martin, N. G., and Molenaar, P. C. (1989). Factor and simplex models for repeated measures: Application to two psychomotor measures of alcohol sensitivity in twins. Behav. Genet. 19:79-96.PubMedGoogle Scholar
  10. Botwinick, J. (1978). Aging and behavior: A comprehensive integration of research findings. New York: Springer.Google Scholar
  11. Browne, M., and Cudeck, R. (1993). Alternative ways of assessing model fit. In K., Bollen and S. Long (eds.), Testing structural equation models (pp. 136-162). Beverly Hills, CA: Sage.Google Scholar
  12. Cattell, R. B. (1960). The multiple abstract variance analysis equations and solutions for nature:nurture research on continuous variables. Psychol. Rev. 67:353-372.PubMedGoogle Scholar
  13. Cattell, R. B. (1970). Separating endogenous, exogenous, ecogenic, and epogenic component curves in developmental data. Dev. Psychol. 3:151-162.Google Scholar
  14. Cattell, R. B. (1971). Intelligence: Its structure, growth and action. Amsterdam: Elsevier.Google Scholar
  15. Cattell, R. B. (1973). Unravelling maturational and learning developments by the comparative MAVA and structural learning approaches. In J. R. Nesselroade and J. Reese (eds.), Life span developmental psychology. New York: Academic Press.Google Scholar
  16. Cattell, R. B. (1982). The inheritance of personality and ability: Research methods and findings. New York: Academic Press.Google Scholar
  17. Cattell, R. B. (1983). Lets End the Duel. American Psychologist 38:769-776.PubMedGoogle Scholar
  18. Cattell, R. B. (1987). Intelligence: Its structure, growth and action. Amsterdam: North-Holland.Google Scholar
  19. Chipeur, H. M., Rovine, M., and Plomin, R. (1990). LISREL modelling: Genetic and evironmental influences on IQ revisited. Intelligence 14:11-29.Google Scholar
  20. Coleman, J. (1968). The mathematical study of change. In H. M. Blalock and A. B. Blalock (eds.), Methodology in social research (pp. 428-475). New York: McGraw-Hill.Google Scholar
  21. Dolan, C. V., Molenaar, P. C. M., and Boomsma, D. I. (1991). Longitudinal genetic analyses of longitudinal means and covariance structure using the simplex model in LISREL. Behav. Genet. 21:49-61.PubMedGoogle Scholar
  22. Eaves, L. J., Long, J., and Heath, A. C. (1986). A theory of developmental change in quantitative phenotypes applied to cognitive development. Behav. Genet. 16:143-162.PubMedGoogle Scholar
  23. Eichorn, D. E., Clausen, J. A., Haan, N., Honzik, M. A. and Mussen, P. H. (eds.). (1981). Past and present in middle life. New York: Academic Press.Google Scholar
  24. Erlenmeyer-Kimling, L., and Jarvik, L. F. (1963). Genetics and intelligence: A review. Science 142:1477-1479.PubMedGoogle Scholar
  25. Falconer, D. S. (1990). Introduction to quantitative genetics (3rd ed.). Edinburg: Oliver and Boyd.Google Scholar
  26. Featherman, D. L., Lerner, R. M., and Perlmutter, M. (eds.). (1994). Life-span development and behavior (vol. 12). Hills-dale, NJ: Erlbaum.Google Scholar
  27. Finkel, D., Pedersen, N. L., McGue, M., and McClearn, G. E. (1995). Heritability of cognitive abilities in adult twins: Comparison of Minnesota and Swedish data. Behav. Genet. 25:421-432.PubMedGoogle Scholar
  28. Funder, C. D., Parke, R. D., Tomlinson-Keasey, C., and Widaman, K. (eds.). (1993). Studying lives through time: Personality and development. Washington, DC: American Psychological Association.Google Scholar
  29. Gottlieb, G. (1991). Experimential canalization of behavioral development: Theory. Dev. Psychol. 27:4-13.Google Scholar
  30. Hamagami, F., and McArdle, J. J. (2001). Advanced studies of individual differences linear dynamic models for longitudinal data analysis. In G. Marcoulides and R. Schumacker (eds.), New developments and techniques in structural equation modeling (pp. 203-246). Hillsdale, NJ: Erlbaum.Google Scholar
  31. Hauspie, R. C., Bergman, P., Bielicki, T., and Susanne, R. (1994). Genetic variance in the pattern of the growth curve for height: A longitudinal analysis of male twins. Ann. Hum. Biol. 21:347-362.PubMedGoogle Scholar
  32. Heath, A. C., Neale, M. C., Hewitt, J. K., Eaves, L. J., and Fulker, D. W. (1989). Testing structural equation models for twin data using LISREL. Behav. Genet. 19:9-35.PubMedGoogle Scholar
  33. Henderson, N. D. (1975). Gene-environment interaction in human behavioral development. In K. W. Schaie, V. E. Anderson, G. E. McClearn, and J. Money (eds.), Developmental Human Behavior Genetics (pp. 5-24). Lexington, MA: Lexington Books.Google Scholar
  34. Henderson, N. D. (1982). Human behavior genetics. Ann. Rev. Psychol. 33:403-440.Google Scholar
  35. Hewitt, J. K., Eaves, L. J., Neale, M. C., and Meyer, J. M. (1988). Resolving causing of developmental continuity or tracking: I. Longitudinal twin studies during growth. Behav. Genet. 18:133-151.PubMedGoogle Scholar
  36. Horn, J. L. (1980). Concepts of intellect in relation to learning and adult development. Intelligence 4:285-317.Google Scholar
  37. Horn, J. L., and Cattell, R. B. (1967). Age differences in fluid and crystalized intelligence. Acta Psychol. 26:107-129.Google Scholar
  38. Horn, J. L., and McArdle, J. J. (1980). Perspectives on mathematical and statistical model building (MASMOB) in research on aging. In L. W. Poon (Ed.), Aging in the 1908's: Selected contemporary issues in the psychology of aging (pp. 503-541). Washington, DC: American Psychological Association.Google Scholar
  39. Horn, J. L., and Noll, J. (1996). Human cognitive capabilities: Gf–Gc theory. In D. P. Flanagan, J. L. Genshaft, and P. L. Harrison (eds.), Beyond traditional intellectual assessment: Contemporary and emerging theories, tests and issues (pp. 53-91). New York: Guilford.Google Scholar
  40. Hsia, D. Y. (1968). Human developmental genetics. Chicago: Year Book Medical Publishers.Google Scholar
  41. Huxley, J. S. (1932). Problems of relative growth. London: Methven and Co.Google Scholar
  42. Jarvik, L. F., Blum, J. E., and Varma, A. O. (1972). Genetic components and intellectual functioning during senescence: A 20-year study of aging twins. Behav. Genet. 2:159-171.PubMedGoogle Scholar
  43. Jarvik, L. F., Eisdorfer, C., and Blum, J. E. (eds.). (1973). Intellectual functioning in adults: Psychological and biological influences. New York: Springer.Google Scholar
  44. Jarvik, L. F., Kallman, F. J., and Falek, A. (1962). Intellectual changes in aged twins. J. Gerontol. 17:289-294.PubMedGoogle Scholar
  45. Jarvik, L. F., Kallman, F. J., Lorge, I., and Falek, A. (1962). Longitudinal study of intellectual changes in senescent twins. In C. Tibbitts and W. Donahue (eds.), Social and psychological aspects of aging (pp. 839-859). New York: Columbia University Press.Google Scholar
  46. Johnson, R. C., McClearn, G. E., Yuen, S., Nagaoshi, C., Ahern, F. M., and Cole, R. E. (1985). Galton's data a century later. American Psychologist, 40:875-892.PubMedGoogle Scholar
  47. Jones, M. C., Bayley, N., Macfarlane, J. W., and Honzik, M. P. (eds.). (1971). The course of human development. Waltham, MA: Xerox College Publication.Google Scholar
  48. Joreskog, K. G., and Sorbom, D. (1979). Advances in factor analysis and structural equation models. In J. Magdson (ed.), Cambridge, MA: Abt Books.Google Scholar
  49. Joreskog, K. G., and Sorbom, D. (1988). LISREL VII: A guide to the program and applications. Chicago: SPSS Inc.Google Scholar
  50. Kallman, F. J., Feingold, L., and Bondy, E. (1951). Comparative adaptational, social, and psychometic data on the life histories of senescent twin pairs. Am. J. Hum. Genet. 3:65-73.PubMedGoogle Scholar
  51. Kohs, S. C. (1923). Intelligence measurement: A psychological and statistical study based upon the blocks-design tests. New York: Macmillan.Google Scholar
  52. Lange, K., Westlake, J., and Spence, M. A. (1976). Extensions to pedigree analysis: III. Variance components by the scoring method. Annals of Human Genetics 39:485-491.PubMedGoogle Scholar
  53. Loehlin, J. C., Horn, J. M., and Willerman, L. (1989). Modeling IQ change: Evidence from the Texas Adoption Project. Child Dev. 60:993-1004.PubMedGoogle Scholar
  54. Lezak, M. D. (1976). Neuropsychological Assessment. New York: Oxford University Press.Google Scholar
  55. Little, R. J. A., and Rubin, D. B. (1987). Statistical Analysis with Missing Data. New York: Wiley & Son.Google Scholar
  56. Lytton, H., Watts, D., and Dunn, B. (1988). Stability of genetic determination from age 2 to 9: A longitudinal twin study. Soc. Biol. 35:62-73.PubMedGoogle Scholar
  57. Martin, N., and Eaves, L. J. (1977). The genetical analysis of covariance structure. Heredity 138:79-95.Google Scholar
  58. Matarazzo, J. D. (1980). Wechsler's measurement and appraisal of adult intelligence. New York: Oxford University Press.Google Scholar
  59. McArdle, J. J., Connell, J., and Goldsmith, H. H. (1980). Latent variable approaches to measurement, structure, longitudinal stability, and genetic influences: Preliminary results from the study of behavioral style. Behavior Genetics 10:609.Google Scholar
  60. McArdle, J. J. (1986). Latent variable growth within behavior genetic models. Behav. Genet. 16:163-200.PubMedGoogle Scholar
  61. McArdle, J. J. (1988). Dynamic but structural equation modeling of repeated measures data. In J. R. Nesselroade and R. B. Cattell (eds.), The handbook of multivariate experimental psychology, (vol. 2, pp. 561-614). New York: Plenum.Google Scholar
  62. McArdle, J. J. (1994). Structural factor analysis experiments with incomplete data. Multivariate Behavioral Research 29:409-454.Google Scholar
  63. McArdle, J. J. (2001). A latent difference score approach to longitudinal dynamic structural analyses. In R. Cudeck, S. du Toit, and D. Sorbom (eds.), Structural equation modeling: Present and future (pp. 342-380). Lincolnwood, IL: Scientific Software International.Google Scholar
  64. McArdle, J. J., Connell, J., and Goldsmith, H. H. (1980). Latent variable approaches to measurement, structure, longitudinal stability, and genetic influences: Preliminary results from the study of behavioral style. Behav. Genet. 10:609.Google Scholar
  65. McArdle, J. J., and Goldsmith, H. H. (1984). Multivariate biometric models of the WAIS. Behav. Genet. 14:609.Google Scholar
  66. McArdle, J. J., and Goldsmith, H. H. (1990). Some alternative structural equation models for multivariate biometric analyses. Behav. Genet. 20:569-608.PubMedGoogle Scholar
  67. McArdle, J. J., Goldsmith, H. H., and Horn, J. L. (1981). Genetic structural equation models of Fluid and Crystallized intelligence. Behav. Genet. 11:607.Google Scholar
  68. McArdle, J. J., and Hamagami, F. (1992). Modeling incomplete longitudinal data using latent growth structural equation models. In L. Collins and J. L. Horn (eds.), Best methods for the analy-sis of change (pp. 276-304). Washington, DC: APA Press.Google Scholar
  69. McArdle, J. J., and Hamagamit, F. (1996). Multilevel models from a multiple group structural equation perspective. In G. Marcoulides and R. Schumacker (eds.), Advanced structural equation modeling: Issues and techniques (pp. 89-124). Hillsdale, NJ: Erlbaum.Google Scholar
  70. McArdle, J. J., and Horn, J. L. (1997). A mega analysis of the WAIS: Adult intelligence across lifespan. Unpublished manuscript. University of Virginia.Google Scholar
  71. McArdle, J. J., and Hamagami, F. (2001). Latent difference score structural models for linear dynamic analyses with incomplete longitudinal data. In L. Collins and A. Sayer (eds.), New methods for the analysis of change: Decade of behavior (pp. 139-175). Washington, DC: APA Press.Google Scholar
  72. McArdle, J. J., Hamagami, F., Meredith, W., and Bradway, K. P. (2001). Modeling the dynamic hypotheses of Gf–Gc theory using longitudinal lifespan data. Learning and Individual Differences 12:53-79.Google Scholar
  73. McArdle, J. J., and McDonald, R. P. (1984). Some algebraic properties of the Reticular Action Model for moment structures. Br. J. Math. Stat. Psychol. 37:234-251.PubMedGoogle Scholar
  74. McArdle, J. J., and Nesselroade, J. R. (1994). Structuring data to study development and change. In S. H. Cohen and H. W. Reese (eds.), Lifespan developmental psychology: Methodological innovations (pp. 223-268). Hillsdale, NJ: Erlbaum.Google Scholar
  75. McArdle, J. J., and Prescott, C. A. (1996). Contemporary models for the biometric genetic analysis of intellectual abilities. In D. P. Flanagan, J. L. Genshaft, and P. L. Harrison (eds.), Beyond traditional intellectual assessment: Contemporary and emerging theories, tests and issues, (pp. 403–436). New York: Guilford. 403-436.Google Scholar
  76. McArdle, J. J., Prescott, C. A., Hamagami, F., and Horn, J. L. (1998). A contemporary method for developmental-genetic analyses of age changes in intellectual abilities. Dev. Neuropsychol. 14:69-114.Google Scholar
  77. McArdle, J. J., and Woodcock, R. W. (1997). Expanding test-retest designs to include developmental time-lag components. Psychol. Meth. 2:403-435.Google Scholar
  78. McClearn, G. E., Johansson, B., Berg, S., Pedersen, N. L., Ahern, F., Petrill, S. A., and Plomin, R. (1997). Substantial genetic influence on cognitive abilities in twins 80 or more years old. Science 276:1560-1563.PubMedGoogle Scholar
  79. McNemar, Q. (1942). The revision of the Stanford-Binet scale. Boston: Houghton-Mifflin.Google Scholar
  80. Neale, M. C. (1993–1998). Mx statistical modeling. Unpublished program manual, Department of Human Genetics, Medical College of Virginia, Virginia Commonwealth University, Richmond, VA.Google Scholar
  81. Neale, M. C., and Cardon, L. R. (1992). Methodology for genetic studies of twins and families. London: Kluwer Academic Press.Google Scholar
  82. Neale, M. C., Heath, A. C., Hewitt, J. K., Eaves, L. J., and Fulker, D. W. (1989). Fitting genetic models with LISREL: Hypothesis testing. Behav. Genet. 19:37-49.PubMedGoogle Scholar
  83. Neale, M. C., and McArdle, J. J. (2000). Structured latent growth curves for twin data. Twin Res. 3:1-13.Google Scholar
  84. Nesselroade, J. R., and Baltes, P. B. (eds.). (1979). Longitudinal research in the study of behavior and development. New York: Academic Press.Google Scholar
  85. Pedersen, N. L., and Harris, J. H. (1991). Developmental behavioral genetics and successful aging. In P. B. Baltes and M. M. Baltes (eds.), Successful aging: Perspectives from the behavioral sciences (pp. 359-380). Cambridge: Cambridge University Press.Google Scholar
  86. Pedersen, N. L., Plomin, R., Nesselroade, J. R., and McClearn, G. E. (1992). A quantitative genetic analysis of cognitive abilities during the second half of the life-span. Psychol. Sci. 3:346-353.Google Scholar
  87. Plomin, R., Pedersen, N. L., Lichtenstein, P., and McClearn, G. E. (1994). Variability and stability in cognitive abilities are largely genetic later in life. Behav. Genet. 24:207-216.PubMedGoogle Scholar
  88. Rogosa, D. (1980). A critique of cross-lagged correlation. Psychological Bulletin 88:245-258.Google Scholar
  89. Reznick, J. S., Corley, R., and Robinson, J. (1997). A longitunal twin study of intelligence in the second year. Monographs of the Society for Research in Child Development. 62 (1), No. 249.Google Scholar
  90. Schaie, K. W. (1996). Intellectual development in adulthood. Cambridge: Cambridge University Press.Google Scholar
  91. Schaie, K. W., Anderson, V. E., McClearn, G. E., and Money, J. (eds.). (1975). Developmental human behavior genetics. Lexington, MA: Lexington Books.Google Scholar
  92. Schneider, E. L. (ed.). (1978). The genetics of aging. New York: Plenum.Google Scholar
  93. Sontag, L. W., Baker, C. T., and Nelson, V. L. (1958). Mental growth and personality development: A longitudinal study. Soc. Res. Child Devel. Monogr. 23 (2): Author please supply missing informationGoogle Scholar
  94. Steuer, J., LaRue, A., Blum, J., and Jarvik, L. F. (1981). Critical loss in the eighth and ninth decades. J. Gerontol. 36:211-213.PubMedGoogle Scholar
  95. Tanner, J. M. (ed.). (1960). Human growth. New York: Pergamon.Google Scholar
  96. Vandenberg, S. G. (1967). Hereditary factors in normal personality traits (as measured by inventories). In Wortis, J. (ed.), Recent Advances in Biological Psychiatry. Volume 9. New York: Plenum, pp. 65-104.Google Scholar
  97. Vandenberg, S. G., and Falkner, F. (1965). Heredity factors in human growth. Hum. Biol. 37:357-365.PubMedGoogle Scholar
  98. Waddington, C. H. (1962). New patterns in genetics and development. New York: Columbia University Press.Google Scholar
  99. Wechsler, D. (1939). Wechsler-Bellevue Intelligence Scale. New York: Psychological Corporation.Google Scholar
  100. Wechsler, D. (1955). Manual for the Wechsler Adult Intelligence Scale. New York: Psychological Corporation.Google Scholar
  101. Wilson, R. S. (1972). Twins: Early mental development. Science 175:915-917.Google Scholar
  102. Wilson, R. S. (1974). Twins: Mental development in the preschool years. Developmental Psychology 10 (4): 580-588.Google Scholar
  103. Wilson, R. S. (1983). The Louisville Twin Study: Developmental synchronies in behavior. Child Development 54:298-316.PubMedGoogle Scholar
  104. Wilson, R. (1978). Synchronies in mental development: An epigenetic perspective. Science 202(4371):939-948.PubMedGoogle Scholar
  105. Wilson, R. (1986). Continuity and change in cognitive ability profile. Behav. Genet. 16:45-60.PubMedGoogle Scholar
  106. Woodcock, R. W. (1990). Theoretical foundations of the WJ-R measures of cognitive ability. Journal of Psychoeducational Assessment 8:231-258.Google Scholar

Copyright information

© Plenum Publishing Corporation 2003

Authors and Affiliations

  • John J. McArdle
  • Fumiaki Hamagami

There are no affiliations available

Personalised recommendations