Advertisement

Journal of Fluorescence

, Volume 8, Issue 2, pp 139–152 | Cite as

Fluorescence Probes for Cyclodextrin Interiors

  • Khader A. Al-Hassan
  • Mohammad F. Khanfer
Article

Abstract

6-Propionyl-2-(dimethylamino)naphthalene (PRODAN) emits two fluorescence bands, at ∼510 and ∼435 run, when dissolved in γ-cyclodextrin (CD) aqueous solutions. The relative contributions of these two bands were found to depend on time and temperature. These emissions are attributed to the inclusion of PRODAN with the dimethylamino group toward the larger and smaller rims inside the γ-CD cavities, respectively. The first position corresponds to a slightly polar and slightly rigid environment, while the second corresponds to a hydrophobic and rigid environment relative to the aqueous polar bulk. In contrast, PRODAN in either α-CD or β-CD aqueous solutions emits a single fluorescence band at 525 and 510 nm, respectively. The emission of PRODAN in α-CD is similar to that in water and indicates no inclusion at all. In β-CD, only one kind of inclusion is possible with the dimethylamino group of PRODAN toward the larger rims of β-cavities. These results are supported by fluorescence decay lifetime measurements and are consistent with our previous observations made for 4-dimethylaminobenzonitrile (DMABN) and 4-diethylaminobenzonitrile (DEABN) in α- and β-CD aqueous solutions [23,24]. Therefore the possibility of twisted intramolecular charge transfer (TICT) state formation in PRODAN in terms of environmental polarity and local free volume of CD cavities is discussed. These observations put PRODAN, DMABN, and other TICT compounds as fluorescence probes for CD interiors.

PRODAN cyclodextrins twisted intramolecular charge transfer local polarity microenvironmental viscosity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    G. Weber and F. G. Farris (1979) Biochemistry 18, 3075.Google Scholar
  2. 2.
    P. Avouris, W. M. Gelbert, and M. A. El-Sayed (1977) Chem. Rev. 77, 793.Google Scholar
  3. 3.
    J. R. Lackowicz and A. Balter (1982) Biophys. Chem. 16, 117.Google Scholar
  4. 4.
    W. Nowak, P. Adamczak, A. Balter, and A. Sygula (1986) J. Mol. Struct. (Theochem.) 13, 139.Google Scholar
  5. 5.
    A. Balter, W. Nowak, W. Pawelkiewicz, and A. Kowalczyk (1988) Chem. Phys. Lett. 143, 565.Google Scholar
  6. 6.
    P. L. G. Chong (1988) Biochemistry 27, 399.Google Scholar
  7. 7.
    A. Sommer, F. Baltauf, and A. Hermetter (1990) Biochemistry 29, 11134.Google Scholar
  8. 8.
    J. Zeng and P. L. G. Chong (1991) Biochemistry 30, 9485.Google Scholar
  9. 9.
    H. Rottenberg (1992) Biochemistry 31, 9473.Google Scholar
  10. 10.
    U. Narang, J. D. Jordan, F. V. Bright, and P. N. Prasad, (1994) J. Phys. Chem. 89, 8101.Google Scholar
  11. 11.
    E. Lippert, W. Luder, and H. Boss (1962) in A. Mangini (Ed.), Advances in Molecular Spectroscopy, Pergamon Press, Oxford.Google Scholar
  12. 12.
    G. Wermuth and W. Rettig (1984) J. Phys. Chem. 88, 2729.Google Scholar
  13. 13.
    J. Lipinski, H. Chojnacki, Z. R. Grabowski, and K. Rotkiewicz (1980) Chem. Phys. Lett. 70, 449.Google Scholar
  14. 14.
    A. M. Rollinson and H. G. Drickamer (1980) J. Chem. Phys. 73, 5981.Google Scholar
  15. 15.
    P. Ilich and F. G. Prendergast (1989) J. Phys. Chem. 93, 4441.Google Scholar
  16. 16.
    F. Heisel, J. A. Miehê, and A. W. Szemik (1987) Chem. Phys. Lett. 138(4), 321.Google Scholar
  17. 17.
    C. E. Bunker, T. L. Bowen, and Y. Sun (1993) Photochem. Photobiol. 58(4), 499.Google Scholar
  18. 18.
    W. Rettig (1986) Angew. Chem. Int. Ed. Engl. 25, 971.Google Scholar
  19. 19.
    K. A. Al-Hassan and W. Rettig (1986) Chem. Phys. Lett. 126, 273.Google Scholar
  20. 20.
    K. A. Al-Hassan and T. Azumi. (1989) Chem. Phys. Lett. 129, 163.Google Scholar
  21. 21.
    R. Hayashi, S. Tazuke, and C. W. Frank (1987) Chem. Phys. Lett. 135, 123; (1987) Macromolecules 20, 983.Google Scholar
  22. 22.
    K. A. Al-Hassan, M. A. Meetani, and Z. F. M. Said (1998) J. Fluoresc. (in press).Google Scholar
  23. 23.
    K. A. Al-Hassan, U. K. A. Klein, and A. Suwaiyan, (1993) Chem. Phys. Lett. 212, 581.Google Scholar
  24. 24.
    K. A. Al-Hassan (1994) Chem. Phys. Lett. 227, 527.Google Scholar
  25. 25.
    K. A. Al-Hassan, A. Suwaiyan, and U. K. A. Klein (1997) Arab. J. Sci. Eng. 22, 45–55.Google Scholar
  26. 26.
    A. C. R. Villiers (1891) Acad. Sci. Paris 539.Google Scholar
  27. 27.
    F. Schardinger and Z. Unters (1903) Nahrungs-Genussmittel Gebrauchsgegenstande 6, 865.Google Scholar
  28. 28.
    H. Bender (1978) Carbohydr. Res. 65, 85.Google Scholar
  29. 29.
    D. D. MacNicol, J. J. Mckendrick, and D. R. Wilson (1978) Chem. Soc. Rev. 7, 65.Google Scholar

Copyright information

© Plenum Publishing Corporation 1998

Authors and Affiliations

  • Khader A. Al-Hassan
    • 1
  • Mohammad F. Khanfer
    • 1
  1. 1.Department of ChemistryYarmouk UniversityIrbidJordan

Personalised recommendations