Journal of Low Temperature Physics

, Volume 110, Issue 1–2, pp 39–44 | Cite as

Massive Charged Strings in the Description of Vortex Ring Quantum Nucleation

  • Uwe R. Fischer


We demonstrate the way in which vortex rings in neutral superfluids are equivalent to massive, charged, elastic strings in an electromagnetic field defined locally on the string from a Kalb-Ramond gauge field. We argue that the action thus obtained describes an intermediate scale of vortex motion with phonon fluctuations of the line between the incompressible hydrodynamic régime and the microscopic one dominated by roton emission and absorption. The formalism thus gives an accurate semiclassical picture of vortex string motion and is of relevance for the description of vortex ring quantum nucleation in a perturbation theory of the purely incompressible case.


Vortex Perturbation Theory Electromagnetic Field Magnetic Material Vortex Ring 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V.N. Popov, JETP 37, 2, 341 (1973Google Scholar
  2. 2.
    J.-M. Duan, Phys.Rev. B49, 17, 12381 (1994)Google Scholar
  3. 3.
    D.P. Arovas, J.A. Freire, Phys.Rev. B55, 2, 1068 (1997)Google Scholar
  4. 4.
    C. Wexler, D.J. Thouless, cond-mat/9612059Google Scholar
  5. 5.
    A. Zee, Nucl.Phys. B421, 111 (1994)Google Scholar
  6. 6.
    A.L. Fetter, Phys.Rev. 162, 1, 143 (1967)Google Scholar
  7. 7.
    K.W. Schwarz, Phys.Rev. B31, 9, 5782 (1985)Google Scholar
  8. 8.
    B. Gradwohl, G. Kalberrnann, T. Piran, Nucl.Phys. B338, 371 (1990)Google Scholar
  9. 9.
    M. Kalb, P. Ramond, Phys.Rev. D9, 8, 2273 (1974)Google Scholar
  10. 10.
    F. Lund, T. Regge, Phys.Rev. D14, 6, 1524 (1976)Google Scholar
  11. 11.
    L.M. Milne-Thomson, Theoretical Hydrodynamics, Macmillan, 1968Google Scholar
  12. 12.
    G.E. Volovik, JETP Lett. 15, 2, 81 (1972)Google Scholar
  13. 13.
    R.L. Davis, Phys.Rev.Lett. 64, 21, 2519 (1990)Google Scholar
  14. 14.
    H. Kao, K. Lee, Phys.Rev. D52, 10, 6050 (1995)Google Scholar
  15. 15.
    G.G. Ihas et al., Phys.Rev.Lett. 69, 2, 327 (1992)Google Scholar

Copyright information

© Plenum Publishing Corporation 1998

Authors and Affiliations

  • Uwe R. Fischer
    • 1
  1. 1.Institut für Theoretische AstrophysikUniversity of TübingenGermany

Personalised recommendations