Journal of Low Temperature Physics

, Volume 113, Issue 5–6, pp 667–680 | Cite as

Induced Gravity in Superfluid 3He

  • G.E. Volovik


The gapless fermionic excitations in superfluid 3 He-A have the “relativistic” spectrum close to the gap nodes. This allowed us to model the modern cos-mological scenaria of baryogenesis and magnetogenesis. The same massless fermions induce another low-energy property of the quantum vacuum – the gravitation. The effective metric of the space, in which the free quasiparticles move along geodesies, is not generally flat. Different order parameter textures correspond to curved effective space and produce many different exotic metrics, which are theoretically discussed in quantum gravity and cosmology. This includes the condensed matter analog of the black hole and event horizon, which can be realized in the moving soliton. This will allow us to simulate and thus experimentally investigate such quantum phenomena as the Hawking radiation from the horizon, the Bekenstein entropy of the black hole, and the structure of the quantum vacuum behind the horizon. One can also simulate the conical singularities produced by cosmic strings and monopoles; inflation; temperature dependence of the cosmological and Newton constants, etc.


Black Hole Soliton Quantum Gravity Event Horizon Cosmic String 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Einstein, “Aether und Relativitätstheorie”, Verlag von Julius Springer. Berlin, 1920.Google Scholar
  2. 2.
    F. Jegerlehner, hep-th/9803021 (see also F. Wilczek, hep-th/9803075).Google Scholar
  3. 3.
    G.E. Volovik, J. Low Temp. Phys. 110, 23 (1998).Google Scholar
  4. 4.
    T.D.C. Bevan, A.J. Manninen, J.B. Cook et al, Nature, 386, 689 (1997).Google Scholar
  5. 5.
    V.M.H. Ruutu, J. Kopu, M. Krusius et al, Phys. Rev. Lett. 79, 5058 (1997).Google Scholar
  6. 6.
    M. Krusius, T. Vachaspati, and G.E. Volovik, cond-mat/9802005.Google Scholar
  7. 7.
    G.E. Volovik, cond-mat/9802091.Google Scholar
  8. 8.
    M. Joyce, and M. Shaposhnikov, Phys. Rev. Lett. 79, 1193 (1997).Google Scholar
  9. 9.
    M. Giovannini and E.M. Shaposhnikov, Phys. Rev. D 57, 2186 (1998).Google Scholar
  10. 10.
    M.O. Katanaev and I.V. Volovich, gr-qc/9801081.Google Scholar
  11. 11.
    R. Bausch and R. Schmitz, Phys. Rev. Lett. 80, 2257 (1998).Google Scholar
  12. 12.
    I.E. Dzyaloshinskii, and G.E. Volovik, Ann. Phys. 125, 67 (1980).Google Scholar
  13. 13.
    W.G. Unruh, Phys. Rev. Lett. 46, 1351 (1981).Google Scholar
  14. 14.
    M. Visser, gr-qc/9712010.Google Scholar
  15. 15.
    H.C. Rosu, gr-qc/9406012.Google Scholar
  16. 16.
    A.D. Sakharov, Sov. Phys. Doklady 12, 1040 (1968).Google Scholar
  17. 17.
    The Super-Kamiokande Collaboration: Y. Fukuda et al, hep-ex/9805021, hep-ex/9805006.Google Scholar
  18. 18.
    G.E. Volovik, Exotic Properties of Superfluid 3 He, (World Scientific, Singapore, 1992).Google Scholar
  19. 19.
    V.P. Frolov and D.V. Fursaev, Phys. Rev. D 56, 2212 (1997).Google Scholar
  20. 20.
    G.E. Volovik, Physica B 162, 222 (1990).Google Scholar
  21. 21.
    G.E. Volovik, Pis'ma ZhETF 67, 666 (1998) [JETP Lett. 67, 698 (1998)].Google Scholar
  22. 22.
    T. Padmanabhan, hep-th/9801138.Google Scholar
  23. 23.
    J.D. Bekenstein, Phys. Rev. D 7, 2333 (1973).Google Scholar
  24. 24.
    S.W. Hawking, Nature 248, 30 (1974); Comm. Math. Phys. 43, 199 (1975).Google Scholar
  25. 25.
    T. Jacobson and G.E. Volovik, cond-mat/9801308, to appear in Phys. Rev. D 15 (1998).Google Scholar
  26. 26.
    I.M. Khalatnikov, “An Introduction to the Theory of Superfluidity” (Benjamin, New York) 1965.Google Scholar
  27. 27.
    G.E. Volovik, JETP Lett. 63, 483 (1996).Google Scholar
  28. 28.
    N.B. Kopnin and G.E. Volovik, JETP Lett. 67, 140 (1998).Google Scholar
  29. 29.
    N. Schopohl and D. Waxman, J. Phys.: Cond. Matt. 4, L639 (1992).Google Scholar
  30. 30.
    T. Jacobson and G.E. Volovik, to be published.Google Scholar
  31. 31.
    M.J. Calderon and E. Bascones, cond-mat/9712033.Google Scholar
  32. 32.
    G.E. Volovik, JETP Lett. 63, 763 (1996).Google Scholar
  33. 33.
    N. B. Kopnin and G. E. Volovik, Phys. Rev. B 57, 8526 (1998).Google Scholar
  34. 34.
    S. Corley, and T. Jacobson, Phys. Rev. D 54, 1568 (1996).Google Scholar
  35. 35.
    G.E. Volovik, Pis'ma ZhETF, 67, 841 (1998) (cond-mat/9804308).Google Scholar
  36. 36.
    G. Kang, Phys. Rev. D 55, 7563 (1997); gr-qc/9705015.Google Scholar
  37. 37.
    M. Visser, “Lorentzian Wormholes. From Einstein to Hawking” (AIP Press, Woodbury, New York) 1995.Google Scholar
  38. 38.
    P.C.W. Davies, T. Dray, and C.A. Manogue, Phys. Rev. D 53, 4382 (1996).Google Scholar

Copyright information

© Plenum Publishing Corporation 1998

Authors and Affiliations

  • G.E. Volovik
    • 1
  1. 1.Helsinki University of Technology, Low Temperature LaboratoryHUTFinland

Personalised recommendations