Advertisement

Plant and Soil

, Volume 249, Issue 1, pp 97–105 | Cite as

Plant availability of thallium in the rhizosphere of hyperaccumulator plants: a key factor for assessment of phytoextraction

  • Husam Al-Najar
  • Rudolf Schulz
  • Volker RömheldEmail author
Article

Abstract

The dynamics of thallium (Tl) fractions in the rhizosphere of two Tl hyperaccumulator plants, kale (Brassica oleracea acephala L. cv. Winterbor) and candytuft (Iberis intermedia Guers.), were examined to evaluate the efficiency of their possible use in phytoextraction. Plants were grown in a rhizobox system with a soil contaminated by Tl deposits from a cement plant in Leimen, Germany (1300 μg Tl kg−1 soil (aqua regia extraction) and 106 μg Tl kg−1 soil NH4NO3-extractable Tl). After 6 and 8 weeks growth of kale and candytuft, respectively, Tl fractions were sequentially extracted and compared with Tl uptake by plants. The uptake from `plant-available' Tl (fraction 1 – 4) in the rhizosphere (0–2 mm distance from root compartment) of both hyperaccumulator plants kale and candytuft accounted for 18 and 21% of the Tl accumulated in their shoots, respectively. The uptake from the `non-plant available' Tl (fraction 5 – 7) accounted for 50 and 40% of the mass of Tl accumulated by kale and candytuft, respectively. The high uptake capacity for Tl and the subsequent marked depletion in the rhizosphere soil might have resulted in a rapid shift in the equilibrium between the various Tl fractions. In addition, the high depletion in the rhizosphere indicates that the transport of Tl to roots is mainly diffusion driven. In conclusion, the easy access of the so called `non-plant available' Tl fraction in the rhizosphere soil by both hyperaccumulator plants indicates a high efficacy of possible phytoremediation of Tl contaminated soils such as the soil at the site in Leimen.

Brassicaceae candytuft kale non-plant available thallium phytoremediation plant-available thallium sequential extraction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anonymous 1993 Dritte Verwaltungsvorschrift des Umweltministeriums zum Bodenschutzgesetz über die Ermittlung und Einstufung von Gehalten anorganischer Schadstoffe im Boden (3.VWV Anorganische Schadstoffe). No. 30 von 29. Sept. 1993, 1029–1036.Google Scholar
  2. Baker A J M, Reeves R D and Hajar A S M 1994 Heavy metal accumulation and tolerance in British populations of the metallophyte Thlaspi caerulescens J & C. Presl (Brassicaceae). New Phytol. 127, 61–68.Google Scholar
  3. Baker A J M, Reeves R D and McGrath S P 1991 In situ decontamination of heavy metal polluted soil using crops of metal-accumulating plants – a feasibility study. In Situ Bioreclamation. Eds. R E Hinchee and R F Olfenbuttel. pp 600–605. Butterworth-Heineman, Boston.Google Scholar
  4. Bernal M P, McGrath S P, Miller A J and Baker A J M 1994 Comparison of the chemical changes in the rhizosphere of nickel hyperaccumulator Alyssum murale and non-hyperaccumulator Raphanus sativus. Plant Soil 164, 251–259.Google Scholar
  5. Brooks R R, Leblanc M, Petit D, Deran A and Robinson B H 1999 The phytomining and environmental significance of hyperaccumulation of thallium by Iberis intermedia from south France. Economic Geology 94, 109–114.Google Scholar
  6. Brümmer G W 1986 Heavy metals species, mobility and availability in soils. In The Importance of Chemical Speciation in Environmental Processes. Eds. M Bernhard, F E Brinckman and P J Sadler. pp. 169–192. Springer-Verlag Berlin, Heidelberg.Google Scholar
  7. Crößmann G 1994 Transfer und Akkumulation von Thallium bei Gemüse-und Obstarten. Landwirtsch. Forsch. 38, 513–516.Google Scholar
  8. Köster W and Merkel D 1982 Beziehungen zwischen den Gehalten an Zink, Cadmium, Blei und Kupfer in Böden und Pflanzen bei Anwendung unterschiedlicher Bodenuntersuchungsmethoden. Landwirtsch. Forsch. 13, 245–254.Google Scholar
  9. Kuchenbuch R and Jungk A 1982 A method for determining concentration profiles at the soil-root interface by thin slicing rhizosperic soil. Plant Soil 68, 391–394.Google Scholar
  10. Kurz H, Schulz R and Römheld V 1999 Selection of cultivars to prevent the contamination of the food chain by cadmium and thallium. J. Plant Nutr. Soil Sci.162, 323–328.Google Scholar
  11. Li X L, George E and Marschner H 1991 Phosphorus depletion and pH decrease at the root– soil and hyphae-soil interfaces of VA mycorrhizal white clover fertilized with ammonium. New Phytol. 119, 397–404.Google Scholar
  12. Marschner H 1995 Mineral Nutrition of Higher Plants. Second Edition. Academic Press, London, San Diego.Google Scholar
  13. McGrath S P, Shen Z G and Zhao F G 1997 Heavy metal uptake and chemical changes in the rhizosphere of Thlaspi caerulescens and Thlaspi ochroleucum grown in contaminated soils. Plant Soil 188, 153–159.Google Scholar
  14. Römheld V and Awad F 2000 Significance of root exudates in acquisition of heavy metals from a contaminated calcareous soil by graminaceous species. J. Plant Nutr. 23, 1857–1866.Google Scholar
  15. Symeonides C and McRae S G 1977 The assessment of plantavailable cadmium in soils. J Environ. Qual. 6, 120–123.Google Scholar
  16. VDLUFA 1996 Umweltanalytik, Methodenbuch Bd. VII, 1. Edition, Chapter. 2.2.3, pp. 1–9. VDLUFA-Verlag Darmstadt, Germany.Google Scholar
  17. Wilcke W, Kretzschmar S, Bundt M and Zech W 1999 Metal concentrations in aggregate interiors, exteriors, whole aggregates, and bulk of Costa Rican soils. Soil Sci. Soc. Am. J. 63, 1244–1249.Google Scholar
  18. Youssef R and Chino M 1988 Development of a new rhizobox system to study the nutrient status in the rhizosphere. Soil Sci. Plant Nutrition 34, 461–465.Google Scholar
  19. Zeien H and Brümmer G W 1989 Chemische Extraktionen zur Bestimmung von Schwermetallbindungsformen in Böden. Mitteilgn. Dtsch. Bodenkund. Gesellsch. 59/I, 505–510Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • Husam Al-Najar
    • 1
  • Rudolf Schulz
    • 1
  • Volker Römheld
    • 1
    Email author
  1. 1.Institut für Pflanzenernährung (330)Universität HohenheimStuttgartGermany

Personalised recommendations