Advertisement

Spontaneous Abortions Are Reduced After Preconception Diagnosis of Translocations

  • Santiago Munné
  • Larry Morrison
  • Jingly Fung
  • Carmen Márquez
  • Ulli Weier
  • Muhterem Bahçe
  • David Sable
  • Larry Grundfeld
  • Bill Schoolcraft
  • Richard Scott
  • Jacques Cohen
Article

Abstract

Purpose: Preimplantation genetic diagnosis of translocations has seldom been attempted. Recently, a genetic test based on analyzing polar bodies at the methaphase stage, following fluorescent in situ hybridization with commercially available whole-chromosome painting DNA probes has been presented. Here we report the use of this method in seven couples in whom the female was a carrier of one of these balanced translocations: 45,XX,der (13q;14q)(q10;q10) (two cases), 46,XX,t(4;14)(p15.3;q24), 45,XX,der(14q;21q) (q10;q10), 46,XX,t(7;20)(q22;q11.2), 46,XX,t(9,11)(p24;q12), 46,XX,t(14;18)(q22;q11), and 46,XX,t(3;8)(q11;;q11).

Methods: The original method was improved in two ways. First, centromeric probes for one or both chromosomes involved in the translocation were added to avoid misdiagnosis caused by possible confusion of first polar body monovalent chromosomes (with two chromatids each) with single chromatids. Second, for cases with terminal translocations where commercially available probes do not cover telomere sequences, a telomere probe labeling the translocated fragment was added.

Results: A total of 26 abnormal, 18 balanced, and 22 normal eggs was detected. Nine normal and seven balanced embryos were transferred, resulting in eight (50%) implanting, of which one spontaneously aborted. To date, the remainder have produced karyotypically normal or balanced babies and ongoing pregnancies. The rate of spontaneous abortions after preimplantation genetic diagnosis (12.5%) was significantly reduced (P < 0.001) compared to natural cycles in the same patients (95%).

Conclusions: With the above improvements, the test can characterize any translocation of maternal origin and produce a high pregnancy rate and an apparently low frequency of spontaneous abortion.

1:3 segregation t(4;14) t(7;20) t(9;11) t(14;18) t(13;14) t(14;21) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    Handyside AH, Kontogianni EH, Hardy K, Winston RML: Pregnancies from biopsied human pre-implantation embryos sexed by Y-specific DNA amplification. Nature 1990;344:768-770Google Scholar
  2. 2.
    Grifo JA, Tang YX, Cohen J, Gilbert F, Sanyal MK, Rosenwaks Z: Ongoing pregnancy in a hemophilia carrier by embryo biopsy and simultaneous amplification of X and Y chromosome specific DNA from single blastomeres. JAMA 1992;6:727-729Google Scholar
  3. 3.
    Handyside AH, Lesko JG, Tarin JJ, Winston RML, Hughes MR: Birth of a normal girl after in vitro fertilization and preimplantation diagnostic testing for cystic fibrosis. N Engl J Med 1992;327:594-598Google Scholar
  4. 4.
    Munné S, Alikani M, Tomkin G, Grifo J, Cohen J: Embryo morphology, developmental rates and maternal age are correlated with chromosome abnormalities. Fertil Steril 1995;64:382-391Google Scholar
  5. 5.
    Verlinsky Y, Cieslak J, Ivakhnenko V, Lifchez A, Strom C, Kuliev A, Preimplantation Genetic Group: Birth of healthy children after preimplantation diagnosis of common aneuploidies by polar body fluorescent in-situ hybridization analysis. Fertil Steril 1996;66:126-129Google Scholar
  6. 6.
    Munné S, Scott R, Sable D, Cohen J: Pregnancies after preconception testing of Robertsonian translocations of maternal origin. Fertil Steril 1998 (in press)Google Scholar
  7. 7.
    Cassel MJ, Munné S, Fung J, Weier HUG: Carrier-specific breakpoint-spanning DNA probes: An approach to preimplantation genetic diagnosis in interphase cells. Hum Reprod 1997;12:2019-2027Google Scholar
  8. 8.
    Fung J, Munné S, Duell T, Weier HUG: Rapid cloning of translocation breakpoints: From blood to YAC in 50 days. J Biochem Mol Biol Biophys 1998; 1 (in press)Google Scholar
  9. 9.
    Conn CM, Harper JC, Winston RML, Delhanty JDA: Infertility couples with Robertsonian translocations: Preimplantation genetic analysis of embryos reveals chaotic cleavage divisions. Hum Genet 1998 (in press)Google Scholar
  10. 10.
    Cohen J, Alikani M, Trowbridge J, Rosenwaks Z: Implantation enhancement by selective assisted hatching using zona drilling of embryos with poor prognosis. Hum Reprod 1992:7;685-916Google Scholar
  11. 11.
    Verlinsky Y, Ginsberg N, Lifchez A, Valle J, Moise J, Strom CM: Analysis of the first polar body: preconception genetic diagnosis. Hum Reprod 1990;5:826-829Google Scholar
  12. 12.
    Munné S, Dailey T, Sultan KM, Grifo J, Cohen J: The use of first polar bodies for preimplantation diagnosis of aneuploidy. Hum Reprod. 1995;10:1015-1021Google Scholar
  13. 13.
    Angell RR, Xian J, Keith J, Ledger W, Baird DT: First meiotic division abnormalities in human oocytes: Mechanisms of trisomy formation. Cytogenet Cell Genet 1994;65:194-202Google Scholar
  14. 14.
    Dailey T, Dale B, Cohen J, Munné S: Association between non-disjunction and maternal age in meiosis-II human oocytes detected by FISH analysis. Am J Hum Genet 1996;59:176-184Google Scholar
  15. 15.
    Therman E, Susman M: Human Chromosomes. Structure Behavior, and Effects. New York, Springer Verlag, 1993Google Scholar
  16. 16.
    Hamerton JL: Frequency of mosaicism, translocation and other variants of trisomy 21. In: De la Cruz F, Gerald B (eds). Trisomy 21 (Down Syndrome): Research Perspective. Baltimore, University Park Press, 1981 pp 99-107Google Scholar
  17. 17.
    Benadiva C, Kligman I, Grifo J, Munné S: Aneuploidy 16 in human embryos increases significantly with maternal age. Fertil Steril 1996;66:248-255Google Scholar
  18. 18.
    Márquez C, Cohen J, Munné S: 23-chromosome multi-color spectral karyotyping of human oocyte and polar bodies. Am J Hum Genet 1997;61:A133(756)Google Scholar
  19. 19.
    Lindenbaum RH, Hulten M, McDermott A, Seabright M: The prevalence of translocations in parents of children with regular trisomy 21: A possible interchromosomal effect? J Med Genet 1985;22:24-28Google Scholar

Copyright information

© Plenum Publishing Corporation 1998

Authors and Affiliations

  • Santiago Munné
    • 1
  • Larry Morrison
    • 2
  • Jingly Fung
    • 3
    • 4
  • Carmen Márquez
    • 1
  • Ulli Weier
    • 4
  • Muhterem Bahçe
    • 1
  • David Sable
    • 1
  • Larry Grundfeld
    • 1
  • Bill Schoolcraft
    • 5
  • Richard Scott
    • 1
  • Jacques Cohen
    • 1
  1. 1.The Institute for Reproductive Medicine and ScienceSaint Barnabas Medical CenterLivingston
  2. 2.VysisDownersgrove
  3. 3.Reproductive Genetics Unit, Department of Obstetrics, Gynecology and Reproductive SciencesUniversity of CaliforniaSan Francisco
  4. 4.Resources for Molecular Cytogenetics, Life Sciences DivisionUniversity of California, E. O. Lawrence Berkeley National LaboratoryBerkeley
  5. 5.The Institute for Reproductive MedicineEnglewood

Personalised recommendations